Improved model
This commit is contained in:
parent
9167ff27d4
commit
60c6c97071
8 changed files with 327 additions and 112 deletions
226
train_model.py
226
train_model.py
|
@ -1,4 +1,9 @@
|
|||
# train_model.py
|
||||
|
||||
import os
|
||||
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
@ -7,82 +12,122 @@ import tensorflow as tf
|
|||
from video_compression_model import NUM_CHANNELS, VideoCompressionModel, PRESET_SPEED_CATEGORIES, VideoDataGenerator
|
||||
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
||||
|
||||
print("GPUs Detected:", tf.config.list_physical_devices('GPU'))
|
||||
from global_train import LOGGER
|
||||
|
||||
# Constants
|
||||
BATCH_SIZE = 4
|
||||
EPOCHS = 100
|
||||
LEARNING_RATE = 0.000001
|
||||
TRAIN_SAMPLES = 500
|
||||
TRAIN_SAMPLES = 50
|
||||
MODEL_SAVE_FILE = "models/model.tf"
|
||||
MODEL_CHECKPOINT_DIR = "checkpoints"
|
||||
CONTINUE_TRAINING = None
|
||||
EARLY_STOP = 10
|
||||
|
||||
def load_list(list_path):
|
||||
with open(list_path, "r") as json_file:
|
||||
video_details_list = json.load(json_file)
|
||||
return video_details_list
|
||||
def load_video_metadata(list_path):
|
||||
LOGGER.trace(f"Entering: load_video_metadata({list_path})")
|
||||
try:
|
||||
with open(list_path, "r") as json_file:
|
||||
file = json.load(json_file)
|
||||
LOGGER.trace(f"load_video_metadata returning: {file}")
|
||||
return file
|
||||
except FileNotFoundError:
|
||||
LOGGER.error(f"Metadata file {list_path} not found.")
|
||||
raise
|
||||
except json.JSONDecodeError:
|
||||
LOGGER.error(f"Error decoding JSON from {list_path}.")
|
||||
raise
|
||||
|
||||
def load_video_from_list(list_path, samples = TRAIN_SAMPLES):
|
||||
details_list = load_list(list_path)
|
||||
all_details = []
|
||||
def load_video_samples(list_path, samples=TRAIN_SAMPLES):
|
||||
"""
|
||||
Load video samples from the metadata list.
|
||||
|
||||
Args:
|
||||
- list_path (str): Path to the metadata JSON file.
|
||||
- samples (int): Number of total samples to be extracted.
|
||||
|
||||
Returns:
|
||||
- list: Extracted video samples.
|
||||
"""
|
||||
LOGGER.trace(f"Entering: load_video_samples({list_path}, {samples})" )
|
||||
|
||||
details_list = load_video_metadata(list_path)
|
||||
all_samples = []
|
||||
num_videos = len(details_list)
|
||||
frames_per_video = int(samples / num_videos)
|
||||
|
||||
print(f"Loading {frames_per_video} frames across {num_videos} videos")
|
||||
|
||||
LOGGER.info(f"Loading {frames_per_video} frames from {num_videos} videos")
|
||||
|
||||
for video_details in details_list:
|
||||
VIDEO_FILE = video_details["video_file"]
|
||||
UNCOMPRESSED_VIDEO_FILE = video_details["uncompressed_video_file"]
|
||||
CRF = video_details['crf'] / 63.0
|
||||
PRESET_SPEED = PRESET_SPEED_CATEGORIES.index(video_details['preset_speed'])
|
||||
video_details['preset_speed'] = PRESET_SPEED
|
||||
video_file = video_details["video_file"]
|
||||
uncompressed_video_file = video_details["uncompressed_video_file"]
|
||||
crf = video_details['crf'] / 63.0
|
||||
preset_speed = PRESET_SPEED_CATEGORIES.index(video_details['preset_speed'])
|
||||
video_details['preset_speed'] = preset_speed
|
||||
|
||||
compressed_frames, uncompressed_frames = [], []
|
||||
|
||||
frames = []
|
||||
frames_compressed = []
|
||||
|
||||
cap = cv2.VideoCapture(os.path.join("test_data/", VIDEO_FILE))
|
||||
cap_uncompressed = cv2.VideoCapture(os.path.join("test_data/", UNCOMPRESSED_VIDEO_FILE))
|
||||
|
||||
for _ in range(frames_per_video):
|
||||
ret, frame_compressed = cap.read()
|
||||
ret_uncompressed, frame = cap_uncompressed.read()
|
||||
|
||||
if not ret or not ret_uncompressed:
|
||||
continue
|
||||
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
frame_compressed = cv2.cvtColor(frame_compressed, cv2.COLOR_BGR2RGB)
|
||||
|
||||
frames.append(preprocess(frame))
|
||||
frames_compressed.append(preprocess(frame_compressed))
|
||||
|
||||
for uncompressed_frame, compressed_frame in zip(frames, frames_compressed):
|
||||
all_details.append({
|
||||
"frame": uncompressed_frame,
|
||||
"compressed_frame": compressed_frame,
|
||||
"crf": CRF,
|
||||
"preset_speed": PRESET_SPEED,
|
||||
"video_file": VIDEO_FILE
|
||||
})
|
||||
|
||||
cap.release()
|
||||
cap_uncompressed.release()
|
||||
try:
|
||||
cap = cv2.VideoCapture(os.path.join("test_data/", video_file))
|
||||
cap_uncompressed = cv2.VideoCapture(os.path.join("test_data/", uncompressed_video_file))
|
||||
|
||||
if not cap.isOpened() or not cap_uncompressed.isOpened():
|
||||
raise RuntimeError(f"Could not open video files {video_file} or {uncompressed_video_file}")
|
||||
|
||||
return all_details
|
||||
for _ in range(frames_per_video):
|
||||
ret, frame_compressed = cap.read()
|
||||
ret_uncompressed, frame = cap_uncompressed.read()
|
||||
|
||||
def preprocess(frame):
|
||||
if not ret or not ret_uncompressed:
|
||||
continue
|
||||
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
frame_compressed = cv2.cvtColor(frame_compressed, cv2.COLOR_BGR2RGB)
|
||||
|
||||
uncompressed_frames.append(normalize(frame))
|
||||
compressed_frames.append(normalize(frame_compressed))
|
||||
|
||||
all_samples.extend({
|
||||
"frame": frame,
|
||||
"compressed_frame": frame_compressed,
|
||||
"crf": crf,
|
||||
"preset_speed": preset_speed,
|
||||
"video_file": video_file
|
||||
} for frame, frame_compressed in zip(uncompressed_frames, compressed_frames))
|
||||
|
||||
except Exception as e:
|
||||
LOGGER.error(f"Error during video sample loading: {e}")
|
||||
raise
|
||||
|
||||
finally:
|
||||
cap.release()
|
||||
cap_uncompressed.release()
|
||||
|
||||
return all_samples
|
||||
|
||||
def normalize(frame):
|
||||
"""
|
||||
Normalize pixel values of the frame to range [0, 1].
|
||||
|
||||
Args:
|
||||
- frame (ndarray): Image frame.
|
||||
|
||||
Returns:
|
||||
- ndarray: Normalized frame.
|
||||
"""
|
||||
LOGGER.trace(f"Normalizing frame")
|
||||
return frame / 255.0
|
||||
|
||||
def save_model(model):
|
||||
os.makedirs("models", exist_ok=True)
|
||||
model.save(MODEL_SAVE_FILE, save_format='tf')
|
||||
print("Model saved successfully!")
|
||||
try:
|
||||
LOGGER.debug("Attempting to save the model.")
|
||||
os.makedirs("models", exist_ok=True)
|
||||
model.save(MODEL_SAVE_FILE, save_format='tf')
|
||||
LOGGER.info("Model saved successfully!")
|
||||
except Exception as e:
|
||||
LOGGER.error(f"Error saving the model: {e}")
|
||||
raise
|
||||
|
||||
def main():
|
||||
global BATCH_SIZE, EPOCHS, TRAIN_SAMPLES, LEARNING_RATE, CONTINUE_TRAINING
|
||||
|
||||
# Argument parsing
|
||||
parser = argparse.ArgumentParser(description="Train the video compression model.")
|
||||
parser.add_argument('-b', '--batch_size', type=int, default=BATCH_SIZE, help='Batch size for training.')
|
||||
|
@ -92,37 +137,35 @@ def main():
|
|||
parser.add_argument('-c', '--continue_training', type=str, nargs='?', const=MODEL_SAVE_FILE, default=None, help='Path to the saved model to continue training. If used without a value, defaults to the MODEL_SAVE_FILE.')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Use the parsed arguments in your script
|
||||
BATCH_SIZE = args.batch_size
|
||||
EPOCHS = args.epochs
|
||||
TRAIN_SAMPLES = args.training_samples
|
||||
LEARNING_RATE = args.learning_rate
|
||||
CONTINUE_TRAINING = args.continue_training
|
||||
|
||||
print("Training configuration:")
|
||||
print(f"Batch size: {BATCH_SIZE}")
|
||||
print(f"Epochs: {EPOCHS}")
|
||||
print(f"Training samples: {TRAIN_SAMPLES}")
|
||||
print(f"Learning rate: {LEARNING_RATE}")
|
||||
print(f"Continue training from: {CONTINUE_TRAINING}")
|
||||
|
||||
all_video_details_train = load_video_from_list("test_data/training.json")
|
||||
all_video_details_val = load_video_from_list("test_data/validation.json", TRAIN_SAMPLES / 2)
|
||||
|
||||
train_generator = VideoDataGenerator(all_video_details_train, BATCH_SIZE)
|
||||
val_generator = VideoDataGenerator(all_video_details_val, BATCH_SIZE)
|
||||
|
||||
if CONTINUE_TRAINING:
|
||||
print("loading model:", CONTINUE_TRAINING)
|
||||
model = tf.keras.models.load_model(CONTINUE_TRAINING) # Load from the specified file
|
||||
# Display training configuration
|
||||
LOGGER.info("Starting the training with the given configuration.")
|
||||
LOGGER.info("Training configuration:")
|
||||
LOGGER.info(f"Batch size: {args.batch_size}")
|
||||
LOGGER.info(f"Epochs: {args.epochs}")
|
||||
LOGGER.info(f"Training samples: {args.training_samples}")
|
||||
LOGGER.info(f"Learning rate: {args.learning_rate}")
|
||||
LOGGER.info(f"Continue training from: {args.continue_training}")
|
||||
|
||||
# Load training and validation samples
|
||||
LOGGER.debug("Loading training and validation samples.")
|
||||
training_samples = load_video_samples("test_data/training.json")
|
||||
validation_samples = load_video_samples("test_data/validation.json", args.training_samples // 2)
|
||||
|
||||
train_generator = VideoDataGenerator(training_samples, args.batch_size)
|
||||
val_generator = VideoDataGenerator(validation_samples, args.batch_size)
|
||||
|
||||
# Load or initialize model
|
||||
if args.continue_training:
|
||||
model = tf.keras.models.load_model(args.continue_training)
|
||||
else:
|
||||
model = VideoCompressionModel()
|
||||
|
||||
# Define the optimizer with a specific learning rate
|
||||
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
|
||||
|
||||
os.makedirs(MODEL_CHECKPOINT_DIR, exist_ok=True)
|
||||
|
||||
# Set optimizer and compile the model
|
||||
optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate)
|
||||
model.compile(loss='mean_squared_error', optimizer=optimizer)
|
||||
|
||||
# Define checkpoints and early stopping
|
||||
checkpoint_callback = ModelCheckpoint(
|
||||
filepath=os.path.join(MODEL_CHECKPOINT_DIR, "epoch-{epoch:02d}.tf"),
|
||||
save_weights_only=False,
|
||||
|
@ -130,24 +173,25 @@ def main():
|
|||
verbose=1,
|
||||
save_format="tf"
|
||||
)
|
||||
early_stop = EarlyStopping(monitor='val_loss', patience=EARLY_STOP, verbose=1, restore_best_weights=True)
|
||||
|
||||
#tf.config.run_functions_eagerly(True)
|
||||
|
||||
model.compile(loss='mean_squared_error', optimizer=optimizer)
|
||||
early_stop = EarlyStopping(monitor='val_loss', patience=5, verbose=1, restore_best_weights=True)
|
||||
|
||||
print("\nTraining the model...")
|
||||
# Train the model
|
||||
LOGGER.info("Starting model training.")
|
||||
model.fit(
|
||||
train_generator,
|
||||
steps_per_epoch=len(train_generator),
|
||||
epochs=EPOCHS,
|
||||
epochs=args.epochs,
|
||||
validation_data=val_generator,
|
||||
validation_steps=len(val_generator),
|
||||
callbacks=[early_stop, checkpoint_callback]
|
||||
)
|
||||
print("\nTraining completed!")
|
||||
LOGGER.info("Model training completed.")
|
||||
|
||||
save_model(model)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
try:
|
||||
main()
|
||||
except Exception as e:
|
||||
LOGGER.error(f"Unexpected error during training: {e}")
|
||||
raise
|
||||
|
|
Reference in a new issue