197 lines
7 KiB
Python
197 lines
7 KiB
Python
# train_model.py
|
|
|
|
import os
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
|
|
|
|
import json
|
|
import numpy as np
|
|
import cv2
|
|
import argparse
|
|
import tensorflow as tf
|
|
from video_compression_model import NUM_CHANNELS, VideoCompressionModel, PRESET_SPEED_CATEGORIES, VideoDataGenerator
|
|
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
|
|
|
from global_train import LOGGER
|
|
|
|
# Constants
|
|
BATCH_SIZE = 4
|
|
EPOCHS = 100
|
|
LEARNING_RATE = 0.000001
|
|
TRAIN_SAMPLES = 50
|
|
MODEL_SAVE_FILE = "models/model.tf"
|
|
MODEL_CHECKPOINT_DIR = "checkpoints"
|
|
EARLY_STOP = 10
|
|
|
|
def load_video_metadata(list_path):
|
|
LOGGER.trace(f"Entering: load_video_metadata({list_path})")
|
|
try:
|
|
with open(list_path, "r") as json_file:
|
|
file = json.load(json_file)
|
|
LOGGER.trace(f"load_video_metadata returning: {file}")
|
|
return file
|
|
except FileNotFoundError:
|
|
LOGGER.error(f"Metadata file {list_path} not found.")
|
|
raise
|
|
except json.JSONDecodeError:
|
|
LOGGER.error(f"Error decoding JSON from {list_path}.")
|
|
raise
|
|
|
|
def load_video_samples(list_path, samples=TRAIN_SAMPLES):
|
|
"""
|
|
Load video samples from the metadata list.
|
|
|
|
Args:
|
|
- list_path (str): Path to the metadata JSON file.
|
|
- samples (int): Number of total samples to be extracted.
|
|
|
|
Returns:
|
|
- list: Extracted video samples.
|
|
"""
|
|
LOGGER.trace(f"Entering: load_video_samples({list_path}, {samples})" )
|
|
|
|
details_list = load_video_metadata(list_path)
|
|
all_samples = []
|
|
num_videos = len(details_list)
|
|
frames_per_video = int(samples / num_videos)
|
|
|
|
LOGGER.info(f"Loading {frames_per_video} frames from {num_videos} videos")
|
|
|
|
for video_details in details_list:
|
|
video_file = video_details["video_file"]
|
|
uncompressed_video_file = video_details["uncompressed_video_file"]
|
|
crf = video_details['crf'] / 63.0
|
|
preset_speed = PRESET_SPEED_CATEGORIES.index(video_details['preset_speed'])
|
|
video_details['preset_speed'] = preset_speed
|
|
|
|
compressed_frames, uncompressed_frames = [], []
|
|
|
|
try:
|
|
cap = cv2.VideoCapture(os.path.join("test_data/", video_file))
|
|
cap_uncompressed = cv2.VideoCapture(os.path.join("test_data/", uncompressed_video_file))
|
|
|
|
if not cap.isOpened() or not cap_uncompressed.isOpened():
|
|
raise RuntimeError(f"Could not open video files {video_file} or {uncompressed_video_file}")
|
|
|
|
for _ in range(frames_per_video):
|
|
ret, frame_compressed = cap.read()
|
|
ret_uncompressed, frame = cap_uncompressed.read()
|
|
|
|
if not ret or not ret_uncompressed:
|
|
continue
|
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
frame_compressed = cv2.cvtColor(frame_compressed, cv2.COLOR_BGR2RGB)
|
|
|
|
uncompressed_frames.append(normalize(frame))
|
|
compressed_frames.append(normalize(frame_compressed))
|
|
|
|
all_samples.extend({
|
|
"frame": frame,
|
|
"compressed_frame": frame_compressed,
|
|
"crf": crf,
|
|
"preset_speed": preset_speed,
|
|
"video_file": video_file
|
|
} for frame, frame_compressed in zip(uncompressed_frames, compressed_frames))
|
|
|
|
except Exception as e:
|
|
LOGGER.error(f"Error during video sample loading: {e}")
|
|
raise
|
|
|
|
finally:
|
|
cap.release()
|
|
cap_uncompressed.release()
|
|
|
|
return all_samples
|
|
|
|
def normalize(frame):
|
|
"""
|
|
Normalize pixel values of the frame to range [0, 1].
|
|
|
|
Args:
|
|
- frame (ndarray): Image frame.
|
|
|
|
Returns:
|
|
- ndarray: Normalized frame.
|
|
"""
|
|
LOGGER.trace(f"Normalizing frame")
|
|
return frame / 255.0
|
|
|
|
def save_model(model):
|
|
try:
|
|
LOGGER.debug("Attempting to save the model.")
|
|
os.makedirs("models", exist_ok=True)
|
|
model.save(MODEL_SAVE_FILE, save_format='tf')
|
|
LOGGER.info("Model saved successfully!")
|
|
except Exception as e:
|
|
LOGGER.error(f"Error saving the model: {e}")
|
|
raise
|
|
|
|
def main():
|
|
# Argument parsing
|
|
parser = argparse.ArgumentParser(description="Train the video compression model.")
|
|
parser.add_argument('-b', '--batch_size', type=int, default=BATCH_SIZE, help='Batch size for training.')
|
|
parser.add_argument('-e', '--epochs', type=int, default=EPOCHS, help='Number of epochs for training.')
|
|
parser.add_argument('-s', '--training_samples', type=int, default=TRAIN_SAMPLES, help='Number of training samples.')
|
|
parser.add_argument('-l', '--learning_rate', type=float, default=LEARNING_RATE, help='Learning rate for training.')
|
|
parser.add_argument('-c', '--continue_training', type=str, nargs='?', const=MODEL_SAVE_FILE, default=None, help='Path to the saved model to continue training. If used without a value, defaults to the MODEL_SAVE_FILE.')
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Display training configuration
|
|
LOGGER.info("Starting the training with the given configuration.")
|
|
LOGGER.info("Training configuration:")
|
|
LOGGER.info(f"Batch size: {args.batch_size}")
|
|
LOGGER.info(f"Epochs: {args.epochs}")
|
|
LOGGER.info(f"Training samples: {args.training_samples}")
|
|
LOGGER.info(f"Learning rate: {args.learning_rate}")
|
|
LOGGER.info(f"Continue training from: {args.continue_training}")
|
|
|
|
# Load training and validation samples
|
|
LOGGER.debug("Loading training and validation samples.")
|
|
training_samples = load_video_samples("test_data/training.json")
|
|
validation_samples = load_video_samples("test_data/validation.json", args.training_samples // 2)
|
|
|
|
train_generator = VideoDataGenerator(training_samples, args.batch_size)
|
|
val_generator = VideoDataGenerator(validation_samples, args.batch_size)
|
|
|
|
# Load or initialize model
|
|
if args.continue_training:
|
|
model = tf.keras.models.load_model(args.continue_training)
|
|
else:
|
|
model = VideoCompressionModel()
|
|
|
|
# Set optimizer and compile the model
|
|
optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate)
|
|
model.compile(loss='mean_squared_error', optimizer=optimizer)
|
|
|
|
# Define checkpoints and early stopping
|
|
checkpoint_callback = ModelCheckpoint(
|
|
filepath=os.path.join(MODEL_CHECKPOINT_DIR, "epoch-{epoch:02d}.tf"),
|
|
save_weights_only=False,
|
|
save_best_only=False,
|
|
verbose=1,
|
|
save_format="tf"
|
|
)
|
|
early_stop = EarlyStopping(monitor='val_loss', patience=EARLY_STOP, verbose=1, restore_best_weights=True)
|
|
|
|
# Train the model
|
|
LOGGER.info("Starting model training.")
|
|
model.fit(
|
|
train_generator,
|
|
steps_per_epoch=len(train_generator),
|
|
epochs=args.epochs,
|
|
validation_data=val_generator,
|
|
validation_steps=len(val_generator),
|
|
callbacks=[early_stop, checkpoint_callback]
|
|
)
|
|
LOGGER.info("Model training completed.")
|
|
|
|
save_model(model)
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
main()
|
|
except Exception as e:
|
|
LOGGER.error(f"Unexpected error during training: {e}")
|
|
raise
|