Initial Commit

This commit is contained in:
Jordon Brooks 2018-04-17 23:46:23 +01:00
parent ba14820cdd
commit ae455dd52d
65 changed files with 1450 additions and 0 deletions

Binary file not shown.

Binary file not shown.

16
Plugins/MC/MC.uplugin Normal file
View file

@ -0,0 +1,16 @@
{
"FileVersion": 3,
"Version": 1,
"VersionName": "1.0",
"FriendlyName": "MC",
"Description": "",
"Category": "Other",
"CreatedBy": "",
"CreatedByURL": "",
"DocsURL": "",
"MarketplaceURL": "",
"SupportURL": "",
"CanContainContent": true,
"IsBetaVersion": true,
"Installed": false
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

17
Plugins/SimplexNoise/.gitattributes vendored Normal file
View file

@ -0,0 +1,17 @@
# Auto detect text files and perform LF normalization
* text=auto
# Custom for Visual Studio
*.cs diff=csharp
# Standard to msysgit
*.doc diff=astextplain
*.DOC diff=astextplain
*.docx diff=astextplain
*.DOCX diff=astextplain
*.dot diff=astextplain
*.DOT diff=astextplain
*.pdf diff=astextplain
*.PDF diff=astextplain
*.rtf diff=astextplain
*.RTF diff=astextplain

48
Plugins/SimplexNoise/.gitignore vendored Normal file
View file

@ -0,0 +1,48 @@
# Windows image file caches
Thumbs.db
ehthumbs.db
# Folder config file
Desktop.ini
# Recycle Bin used on file shares
$RECYCLE.BIN/
# Windows Installer files
*.cab
*.msi
*.msm
*.msp
# Windows shortcuts
*.lnk
# =========================
# Operating System Files
# =========================
# OSX
# =========================
.DS_Store
.AppleDouble
.LSOverride
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
Archive/SimplexNoise_UE4.18.3.zip

View file

@ -0,0 +1,8 @@
[FilterPlugin]
; This section lists additional files which will be packaged along with your plugin. Paths should be listed relative to the root plugin directory, and
; may include "...", "*", and "?" wildcards to match directories, files, and individual characters respectively.
;
; Examples:
; /README.txt
; /Extras/...
; /Binaries/ThirdParty/*.dll

View file

@ -0,0 +1,22 @@
# SimplexNoise
![SimplexNoise UE4 Plugin Screenshot](http://i.imgur.com/Fpw5mPX.png)
* This is a clean, fast, modern and free Perlin Simplex noise function.
* If we change float to double it could be even faster but there is no double type in Blueprint
* All Public Functions are BlueprintCallable so they can be used in every blueprint
From DevDad and Dedicated to you and Unreal Community.
Use it free for what ever you want.
I only request that you mention me in the credits for your game in the way that feels most appropriate to you.
* SimplexNoise 1D,2D,3D & 4D
* Scaled Version SimplexNoise 1D,2D,3D & 4D
* InRange version SimplexNoise 1D,2D,3D & 4D
* SimplexNoise Function retruns float value between 0 - 1
* SimplexNoise Scaled retruns float value between 0 - scale factor
* SimplexNoise In Range returns float value between minRange - maxRange
This algorithm was originally designed by Ken Perlin, but my code has been
adapted and extended from the implementation written by Stefan Gustavson (stegu@itn.liu.se)
and modified to fit to Unreal Engine 4

Binary file not shown.

After

Width:  |  Height:  |  Size: 5 KiB

View file

@ -0,0 +1,24 @@
{
"PluginFileVersion" : 1,
"FriendlyName" : "Simplex Noise",
"Version" : 1,
"VersionName" : "1.0.0",
"CreatedBy" : "DavDad",
"CreatedByURL" : "https://art-and-code.com/",
"Description" : "SimplexNoise Blueprint Library to use in Unreal Engine 4",
"Category" : "ArtAndCodeSuite.SimplexNoise",
"EnabledByDefault" : true,
"Modules" :
[
{
"Name" : "SimplexNoise",
"Type" : "Runtime",
"LoadingPhase" : "PreDefault",
"WhitelistPlatforms" : [ "Win64", "Win32", "Mac" ]
},
]
}

View file

@ -0,0 +1,523 @@
/*
SimplexNoise 1.0.0
-----
DevDad - Afan Olovcic @ www.art-and-code.com - 08/12/2015
This algorithm was originally designed by Ken Perlin, but my code has been
adapted and extended from the implementation written by Stefan Gustavson (stegu@itn.liu.se)
and modified to fit to Unreal Engine 4
* This is a clean, fast, modern and free Perlin Simplex noise function.
* If we change float to double it could be even faster but there is no double type in Blueprint
* All Public Functions are BlueprintCallable so they can be used in every blueprint
From DevDad and Dedicated to you and Unreal Community
Use it free for what ever you want
I only request that you mention me in the credits for your game in the way that feels most appropriate to you.
*/
#include "SimplexNoiseBPLibrary.h"
#include "SimplexNoisePrivatePCH.h"
// USimplexNoiseBPLibrary
#define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) )
USimplexNoiseBPLibrary::USimplexNoiseBPLibrary(const class FObjectInitializer& PCIP)
: Super(PCIP)
{
}
unsigned char USimplexNoiseBPLibrary::perm[512] = { 151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
void USimplexNoiseBPLibrary::setNoiseSeed(const int32& newSeed)
{
TArray<bool> availableSeeds;
availableSeeds.Init(true, 256);
FMath::RandInit(newSeed);
for (uint16 it = 0; it < 256;++it)
{
uint8 nextNum;
do
{
nextNum = FMath::RandRange(0, 255);
} while (!availableSeeds[nextNum]);
USimplexNoiseBPLibrary::perm[it] = (unsigned char)nextNum;
USimplexNoiseBPLibrary::perm[it+256] = (unsigned char)nextNum;
}
}
static unsigned char simplex[64][4] = {
{ 0,1,2,3 },{ 0,1,3,2 },{ 0,0,0,0 },{ 0,2,3,1 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 1,2,3,0 },
{ 0,2,1,3 },{ 0,0,0,0 },{ 0,3,1,2 },{ 0,3,2,1 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 1,3,2,0 },
{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },
{ 1,2,0,3 },{ 0,0,0,0 },{ 1,3,0,2 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 2,3,0,1 },{ 2,3,1,0 },
{ 1,0,2,3 },{ 1,0,3,2 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 2,0,3,1 },{ 0,0,0,0 },{ 2,1,3,0 },
{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },
{ 2,0,1,3 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 3,0,1,2 },{ 3,0,2,1 },{ 0,0,0,0 },{ 3,1,2,0 },
{ 2,1,0,3 },{ 0,0,0,0 },{ 0,0,0,0 },{ 0,0,0,0 },{ 3,1,0,2 },{ 0,0,0,0 },{ 3,2,0,1 },{ 3,2,1,0 } };
float USimplexNoiseBPLibrary::grad(int hash, float x)
{
int h = hash & 15;
float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if (h & 8) grad = -grad; // Set a random sign for the gradient
return (grad * x); // Multiply the gradient with the distance
}
float USimplexNoiseBPLibrary::grad(int hash, float x, float y)
{
int h = hash & 7; // Convert low 3 bits of hash code
float u = h < 4 ? x : y; // into 8 simple gradient directions,
float v = h < 4 ? y : x; // and compute the dot product with (x,y).
return ((h & 1) ? -u : u) + ((h & 2) ? -2.0f*v : 2.0f*v);
}
float USimplexNoiseBPLibrary::grad(int hash, float x, float y, float z)
{
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
float u = h < 8 ? x : y; // gradient directions, and compute dot product.
float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15
return ((h & 1) ? -u : u) + ((h & 2) ? -v : v);
}
float USimplexNoiseBPLibrary::grad(int hash, float x, float y, float z, float t)
{
int h = hash & 31; // Convert low 5 bits of hash code into 32 simple
float u = h < 24 ? x : y; // gradient directions, and compute dot product.
float v = h < 16 ? y : z;
float w = h < 8 ? z : t;
return ((h & 1) ? -u : u) + ((h & 2) ? -v : v) + ((h & 4) ? -w : w);
}
// 1D Simplex Noise
float USimplexNoiseBPLibrary::SimplexNoise1D(float x)
{
int i0 = FASTFLOOR(x);
int i1 = i0 + 1;
float x0 = x - i0;
float x1 = x0 - 1.0f;
float n0, n1;
float t0 = 1.0f - x0*x0;
// if(t0 < 0.0f) t0 = 0.0f;
t0 *= t0;
n0 = t0 * t0 * grad(perm[i0 & 0xff], x0);
float t1 = 1.0f - x1*x1;
// if(t1 < 0.0f) t1 = 0.0f;
t1 *= t1;
n1 = t1 * t1 * grad(perm[i1 & 0xff], x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 would scale to fit exactly within [-1,1], but
// we want to match PRMan's 1D noise, so we scale it down some more.
return 0.25f * (n0 + n1);
}
// 2D Simplex Noise
float USimplexNoiseBPLibrary::SimplexNoise2D(float x, float y)
{
#define F2 0.366025403f // F2 = 0.5*(sqrt(3.0)-1.0)
#define G2 0.211324865f // G2 = (3.0-Math.sqrt(3.0))/6.0
float n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y)*F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int i = FASTFLOOR(xs);
int j = FASTFLOOR(ys);
float t = (float)(i + j)*G2;
float X0 = i - t; // Unskew the cell origin back to (x,y) space
float Y0 = j - t;
float x0 = x - X0; // The x,y distances from the cell origin
float y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
float y2 = y0 - 1.0f + 2.0f * G2;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i & 0xff;
int jj = j & 0xff;
// Calculate the contribution from the three corners
float t0 = 0.5f - x0*x0 - y0*y0;
if (t0 < 0.0f) n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0);
}
float t1 = 0.5f - x1*x1 - y1*y1;
if (t1 < 0.0f) n1 = 0.0f;
else {
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1);
}
float t2 = 0.5f - x2*x2 - y2*y2;
if (t2 < 0.0f) n2 = 0.0f;
else {
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
//return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary! //These values currently scale from ~ [-0.884343445, 0.884343445]
return 40.0f / 0.884343445f * (n0 + n1 + n2); //accurate to e-9 so that values scale to [-1, 1], same acc as F2 G2.
}
// 3D Simplex Noise
float USimplexNoiseBPLibrary::SimplexNoise3D(float x, float y, float z)
{
// Simple skewing factors for the 3D case
#define F3 0.333333333f
#define G3 0.166666667f
float n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y + z)*F3; // Very nice and simple skew factor for 3D
float xs = x + s;
float ys = y + s;
float zs = z + s;
int i = FASTFLOOR(xs);
int j = FASTFLOOR(ys);
int k = FASTFLOOR(zs);
float t = (float)(i + j + k)*G3;
float X0 = i - t; // Unskew the cell origin back to (x,y,z) space
float Y0 = j - t;
float Z0 = k - t;
float x0 = x - X0; // The x,y,z distances from the cell origin
float y0 = y - Y0;
float z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
/* This code would benefit from a backport from the GLSL version! */
if (x0 >= y0) {
if (y0 >= z0)
{
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
} // X Y Z order
else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order
else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order
}
else { // x0<y0
if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order
else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order
else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
float y1 = y0 - j1 + G3;
float z1 = z0 - k1 + G3;
float x2 = x0 - i2 + 2.0f*G3; // Offsets for third corner in (x,y,z) coords
float y2 = y0 - j2 + 2.0f*G3;
float z2 = z0 - k2 + 2.0f*G3;
float x3 = x0 - 1.0f + 3.0f*G3; // Offsets for last corner in (x,y,z) coords
float y3 = y0 - 1.0f + 3.0f*G3;
float z3 = z0 - 1.0f + 3.0f*G3;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i & 0xff;
int jj = j & 0xff;
int kk = k & 0xff;
// Calculate the contribution from the four corners
float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
if (t0 < 0.0f) n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0);
}
float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
if (t1 < 0.0f) n1 = 0.0f;
else {
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1);
}
float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
if (t2 < 0.0f) n2 = 0.0f;
else {
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2);
}
float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
if (t3 < 0.0f) n3 = 0.0f;
else {
t3 *= t3;
n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
}
// 4D Simplex Noise
float USimplexNoiseBPLibrary::SimplexNoise4D(float x, float y, float z, float w)
{
#define F4 0.309016994f // F4 = (Math.sqrt(5.0)-1.0)/4.0
#define G4 0.138196601f // G4 = (5.0-Math.sqrt(5.0))/20.0
float n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
float s = (x + y + z + w) * F4; // Factor for 4D skewing
float xs = x + s;
float ys = y + s;
float zs = z + s;
float ws = w + s;
int i = FASTFLOOR(xs);
int j = FASTFLOOR(ys);
int k = FASTFLOOR(zs);
int l = FASTFLOOR(ws);
float t = (i + j + k + l) * G4; // Factor for 4D unskewing
float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
float Y0 = j - t;
float Z0 = k - t;
float W0 = l - t;
float x0 = x - X0; // The x,y,z,w distances from the cell origin
float y0 = y - Y0;
float z0 = z - Z0;
float w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// The method below is a good way of finding the ordering of x,y,z,w and
// then find the correct traversal order for the simplex we’re in.
// First, six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to add up binary bits
// for an integer index.
int c1 = (x0 > y0) ? 32 : 0;
int c2 = (x0 > z0) ? 16 : 0;
int c3 = (y0 > z0) ? 8 : 0;
int c4 = (x0 > w0) ? 4 : 0;
int c5 = (y0 > w0) ? 2 : 0;
int c6 = (z0 > w0) ? 1 : 0;
int c = c1 + c2 + c3 + c4 + c5 + c6;
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// The number 3 in the "simplex" array is at the position of the largest coordinate.
i1 = simplex[c][0] >= 3 ? 1 : 0;
j1 = simplex[c][1] >= 3 ? 1 : 0;
k1 = simplex[c][2] >= 3 ? 1 : 0;
l1 = simplex[c][3] >= 3 ? 1 : 0;
// The number 2 in the "simplex" array is at the second largest coordinate.
i2 = simplex[c][0] >= 2 ? 1 : 0;
j2 = simplex[c][1] >= 2 ? 1 : 0;
k2 = simplex[c][2] >= 2 ? 1 : 0;
l2 = simplex[c][3] >= 2 ? 1 : 0;
// The number 1 in the "simplex" array is at the second smallest coordinate.
i3 = simplex[c][0] >= 1 ? 1 : 0;
j3 = simplex[c][1] >= 1 ? 1 : 0;
k3 = simplex[c][2] >= 1 ? 1 : 0;
l3 = simplex[c][3] >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to look that up.
float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
float y1 = y0 - j1 + G4;
float z1 = z0 - k1 + G4;
float w1 = w0 - l1 + G4;
float x2 = x0 - i2 + 2.0f*G4; // Offsets for third corner in (x,y,z,w) coords
float y2 = y0 - j2 + 2.0f*G4;
float z2 = z0 - k2 + 2.0f*G4;
float w2 = w0 - l2 + 2.0f*G4;
float x3 = x0 - i3 + 3.0f*G4; // Offsets for fourth corner in (x,y,z,w) coords
float y3 = y0 - j3 + 3.0f*G4;
float z3 = z0 - k3 + 3.0f*G4;
float w3 = w0 - l3 + 3.0f*G4;
float x4 = x0 - 1.0f + 4.0f*G4; // Offsets for last corner in (x,y,z,w) coords
float y4 = y0 - 1.0f + 4.0f*G4;
float z4 = z0 - 1.0f + 4.0f*G4;
float w4 = w0 - 1.0f + 4.0f*G4;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i & 0xff;
int jj = j & 0xff;
int kk = k & 0xff;
int ll = l & 0xff;
// Calculate the contribution from the five corners
float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
if (t0 < 0.0f) n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk + perm[ll]]]], x0, y0, z0, w0);
}
float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
if (t1 < 0.0f) n1 = 0.0f;
else {
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]], x1, y1, z1, w1);
}
float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
if (t2 < 0.0f) n2 = 0.0f;
else {
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]], x2, y2, z2, w2);
}
float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
if (t3 < 0.0f) n3 = 0.0f;
else {
t3 *= t3;
n3 = t3 * t3 * grad(perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]], x3, y3, z3, w3);
}
float t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
if (t4 < 0.0f) n4 = 0.0f;
else {
t4 *= t4;
n4 = t4 * t4 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]], x4, y4, z4, w4);
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0f * (n0 + n1 + n2 + n3 + n4);
}
// Scaled by float value
float USimplexNoiseBPLibrary::SimplexNoiseScaled1D(float x, float s)
{
return SimplexNoise1D(x)*s;
}
float USimplexNoiseBPLibrary::SimplexNoiseScaled2D(float x, float y, float s)
{
return SimplexNoise2D(x, y)*s;
}
float USimplexNoiseBPLibrary::SimplexNoiseScaled3D(float x, float y, float z, float s)
{
return SimplexNoise3D(x, y, z)*s;
}
float USimplexNoiseBPLibrary::SimplexNoiseScaled4D(float x, float y, float z, float w, float s)
{
return SimplexNoise4D(x, y, z, w) * s;
};
// Return value in Range between two float numbers
// Return Value is scaled by difference between rangeMin & rangeMax value
float USimplexNoiseBPLibrary::SimplexNoiseInRange1D(float x, float rangeMin, float rangeMax)
{
if (rangeMax < rangeMin)rangeMax = rangeMin + 1.0f; // prevent negative numbers in that case we will return value between 0 - 1
return SimplexNoiseScaled1D(x, (rangeMax - rangeMin)) + rangeMin;
}
float USimplexNoiseBPLibrary::SimplexNoiseInRange2D(float x, float y, float rangeMin, float rangeMax)
{
if (rangeMax < rangeMin)rangeMax = rangeMin + 1.0f; // prevent negative numbers in that case we will return value between 0 - 1
return SimplexNoiseScaled2D(x,y, (rangeMax - rangeMin)) + rangeMin;
}
float USimplexNoiseBPLibrary::SimplexNoiseInRange3D(float x, float y, float z, float rangeMin, float rangeMax)
{
if (rangeMax < rangeMin)rangeMax = rangeMin + 1.0f; // prevent negative numbers in that case we will return value between 0 - 1
return SimplexNoiseScaled3D(x,y,z, (rangeMax - rangeMin)) + rangeMin;
}
float USimplexNoiseBPLibrary::SimplexNoiseInRange4D(float x, float y, float z, float w, float rangeMin, float rangeMax)
{
if (rangeMax < rangeMin)rangeMax = rangeMin + 1.0f; // prevent negative numbers in that case we will return value between 0 - 1
return SimplexNoiseScaled4D(x,y,z,w, (rangeMax - rangeMin)) + rangeMin;
}

View file

@ -0,0 +1,10 @@
/*
SimplexNoise 1.0.0
-----
DevDad - Afan Olovcic @ art-and-code.com - 08/12/2015
*/
#include "SimplexNoisePrivatePCH.h"
//DEFINE_LOG_CATEGORY(Victory)
IMPLEMENT_MODULE(FDefaultGameModuleImpl, SimplexNoise);

View file

@ -0,0 +1,11 @@
/*
SimplexNoise 1.0.0
-----
DevDad - Afan Olovcic @ art-and-code.com - 08/12/2015
*/
#pragma once
#include "Engine.h"
#include "SimplexNoiseClasses.h"
//DECLARE_LOG_CATEGORY_EXTERN(Victory, Log, All);

View file

@ -0,0 +1,27 @@
/*
SimplexNoise 1.0.0
-----
DevDad @ art-and-code.com - 08/12/2015
*/
#pragma once
#include "ModuleManager.h"
class ISimplexNoise : public IModuleInterface
{
public:
static inline ISimplexNoise& Get()
{
return FModuleManager::LoadModuleChecked< ISimplexNoise >( "VictoryAI" );
}
static inline bool IsAvailable()
{
return FModuleManager::Get().IsModuleLoaded( "SimplexNoise" );
}
};

View file

@ -0,0 +1,85 @@
/*
SimplexNoise 1.0.0
-----
DevDad - Afan Olovcic @ www.art-and-code.com - 08/12/2015
This algorithm was originally designed by Ken Perlin, but my code has been
adapted and extended from the implementation written by Stefan Gustavson (stegu@itn.liu.se)
and modified to fit to Unreal Engine 4
* This is a clean, fast, modern and free Perlin Simplex noise function.
* If we change float to double it could be even faster but there is no double type in Blueprint
* All Public Functions are BlueprintCallable so they can be used in every blueprint
From DevDad and Dedicated to you and Unreal Community
Use it free for what ever you want
I only request that you mention me in the credits for your game in the way that feels most appropriate to you.
*/
#pragma once
#include "SimplexNoiseBPLibrary.generated.h"
UCLASS()
class SIMPLEXNOISE_API USimplexNoiseBPLibrary : public UBlueprintFunctionLibrary
{
GENERATED_UCLASS_BODY()
private:
static unsigned char perm[];
static float grad(int hash, float x);
static float grad(int hash, float x, float y);
static float grad(int hash, float x, float y, float z);
static float grad(int hash, float x, float y, float z, float t);
public:
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static void setNoiseSeed(const int32& newSeed);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoise1D(float x);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoise2D(float x, float y);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoise3D(float x, float y, float z);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoise4D(float x, float y, float z, float w);
// Scaled by float value
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoiseScaled1D(float x , float s);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoiseScaled2D(float x, float y, float s);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoiseScaled3D(float x, float y, float z, float s);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoiseScaled4D(float x, float y, float z, float w, float s);
// Return value in Range between two float numbers
// Return Value is scaled by difference between rangeMin & rangeMax value
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoiseInRange1D(float x, float rangeMin, float rangeMax);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoiseInRange2D(float x, float y, float rangeMin, float rangeMax);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoiseInRange3D(float x, float y, float z, float rangeMin, float rangeMax);
UFUNCTION(BlueprintCallable, Category = "SimplexNoise")
static float SimplexNoiseInRange4D(float x, float y, float z, float w, float rangeMin, float rangeMax);
};

View file

@ -0,0 +1,27 @@
/*
SimplexNoise 1.0.0
-----
DevDad - Afan Olovcic @ www.art-and-code.com - 08/12/2015
*/
using UnrealBuildTool;
public class SimplexNoise : ModuleRules
{
public SimplexNoise(ReadOnlyTargetRules Target) : base(Target) //4.16+ Module Constructor
//public SimplexNoise(TargetInfo Target) //4.15 Module Constructor
{
PCHUsage = ModuleRules.PCHUsageMode.UseExplicitOrSharedPCHs;
//Private Paths
PrivateIncludePaths.AddRange(new string[] {
"SimplexNoise/Private"
});
PublicDependencyModuleNames.AddRange(
new string[] {
"Core",
"CoreUObject",
"Engine"
}
);
}
}