182 lines
8 KiB
Python
182 lines
8 KiB
Python
# video_compression_model.py
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from global_train import LOGGER
|
|
|
|
PRESET_SPEED_CATEGORIES = ["ultrafast", "superfast", "veryfast", "faster", "fast", "medium", "slow", "slower", "veryslow"]
|
|
NUM_PRESET_SPEEDS = len(PRESET_SPEED_CATEGORIES)
|
|
NUM_CHANNELS = 3
|
|
WIDTH = 638
|
|
HEIGHT = 360
|
|
|
|
#from tensorflow.keras.mixed_precision import Policy
|
|
|
|
#policy = Policy('mixed_float16')
|
|
#tf.keras.mixed_precision.set_global_policy(policy)
|
|
|
|
|
|
|
|
def normalize(frame):
|
|
"""
|
|
Normalize pixel values of the frame to range [0, 1].
|
|
|
|
Args:
|
|
- frame (ndarray): Image frame.
|
|
|
|
Returns:
|
|
- ndarray: Normalized frame.
|
|
"""
|
|
LOGGER.trace(f"Normalizing frame")
|
|
return frame / 255.0
|
|
|
|
class VideoDataGenerator(tf.keras.utils.Sequence):
|
|
def __init__(self, video_details_list, batch_size):
|
|
LOGGER.debug("Initializing VideoDataGenerator with batch size: {}".format(batch_size))
|
|
self.video_details_list = video_details_list
|
|
self.batch_size = batch_size
|
|
|
|
def __len__(self):
|
|
return int(np.ceil(len(self.video_details_list) / float(self.batch_size)))
|
|
|
|
def __getitem__(self, idx):
|
|
start_idx = idx * self.batch_size
|
|
end_idx = (idx + 1) * self.batch_size
|
|
batch_data = self.video_details_list[start_idx:end_idx]
|
|
|
|
# Determine the number of videos and frames per video
|
|
num_videos = len(batch_data)
|
|
frames_per_video = batch_data[0]['frames_per_video'] # Assuming all videos have the same number of frames
|
|
|
|
# Pre-allocate arrays for the batch data
|
|
x1 = np.empty((num_videos * frames_per_video, HEIGHT, WIDTH, NUM_CHANNELS))
|
|
x2 = np.empty_like(x1)
|
|
x3 = np.empty((num_videos * frames_per_video, 1))
|
|
x4 = np.empty_like(x3)
|
|
|
|
# Iterate over the videos and frames, filling the pre-allocated arrays
|
|
for i, item in enumerate(batch_data):
|
|
compressed_video_file = item["compressed_video_file"]
|
|
original_video_file = item["original_video_file"]
|
|
crf = item["crf"]
|
|
preset_speed = item["preset_speed"]
|
|
|
|
cap_compressed = cv2.VideoCapture(compressed_video_file)
|
|
cap_original = cv2.VideoCapture(original_video_file)
|
|
for j in range(frames_per_video):
|
|
compressed_ret, compressed_frame = cap_compressed.read()
|
|
original_ret, original_frame = cap_original.read()
|
|
if not compressed_ret or not original_ret:
|
|
continue
|
|
|
|
# Check frame dimensions and resize if necessary
|
|
if original_frame.shape[:2] != (WIDTH, HEIGHT):
|
|
LOGGER.info(f"Resizing video: {original_video_file}")
|
|
original_frame = cv2.resize(original_frame, (WIDTH, HEIGHT), interpolation=cv2.INTER_AREA)
|
|
if compressed_frame.shape[:2] != (WIDTH, HEIGHT):
|
|
LOGGER.info(f"Resizing video: {compressed_video_file}")
|
|
compressed_frame = cv2.resize(compressed_frame, (WIDTH, HEIGHT), interpolation=cv2.INTER_AREA)
|
|
|
|
original_frame = cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB)
|
|
compressed_frame = cv2.cvtColor(compressed_frame, cv2.COLOR_BGR2RGB)
|
|
|
|
# Store the processed frames and metadata directly in the pre-allocated arrays
|
|
x1[i * frames_per_video + j] = normalize(original_frame)
|
|
x2[i * frames_per_video + j] = normalize(compressed_frame)
|
|
x3[i * frames_per_video + j] = crf
|
|
x4[i * frames_per_video + j] = preset_speed
|
|
|
|
cap_original.release()
|
|
cap_compressed.release()
|
|
|
|
y = x2
|
|
inputs = {"uncompressed_frame": x1, "compressed_frame": x2, "crf": x3, "preset_speed": x4}
|
|
return inputs, y
|
|
|
|
|
|
|
|
class VideoCompressionModel(tf.keras.Model):
|
|
def __init__(self):
|
|
super(VideoCompressionModel, self).__init__()
|
|
LOGGER.debug("Initializing VideoCompressionModel.")
|
|
|
|
# Inputs
|
|
self.crf_input = tf.keras.layers.InputLayer(name='crf', input_shape=(1,))
|
|
self.preset_speed_input = tf.keras.layers.InputLayer(name='preset_speed', input_shape=(1,))
|
|
self.uncompressed_frame_input = tf.keras.layers.InputLayer(name='uncompressed_frame', input_shape=(None, None, NUM_CHANNELS))
|
|
self.compressed_frame_input = tf.keras.layers.InputLayer(name='compressed_frame', input_shape=(None, None, NUM_CHANNELS))
|
|
|
|
# Embedding for speed preset and FC layer for CRF and preset speed
|
|
self.embedding = tf.keras.layers.Embedding(NUM_PRESET_SPEEDS, 16)
|
|
self.fc = tf.keras.layers.Dense(32, activation='relu')
|
|
|
|
# Encoder layers
|
|
self.encoder = tf.keras.Sequential([
|
|
tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(None, None, 2 * NUM_CHANNELS + 32)),
|
|
tf.keras.layers.BatchNormalization(),
|
|
tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
|
|
tf.keras.layers.BatchNormalization(),
|
|
tf.keras.layers.MaxPooling2D((2, 2)),
|
|
tf.keras.layers.Dropout(0.3)
|
|
])
|
|
|
|
# Decoder layers
|
|
self.decoder = tf.keras.Sequential([
|
|
tf.keras.layers.Conv2DTranspose(128, (3, 3), activation='relu', padding='same'),
|
|
tf.keras.layers.BatchNormalization(),
|
|
tf.keras.layers.Conv2DTranspose(64, (3, 3), activation='relu', padding='same'),
|
|
tf.keras.layers.BatchNormalization(),
|
|
tf.keras.layers.UpSampling2D((2, 2)),
|
|
tf.keras.layers.Dropout(0.3),
|
|
tf.keras.layers.Conv2D(NUM_CHANNELS, (3, 3), activation='sigmoid', padding='same') # Output layer for video frames
|
|
])
|
|
|
|
def call(self, inputs):
|
|
LOGGER.trace("Calling VideoCompressionModel.")
|
|
uncompressed_frame, compressed_frame, crf, preset_speed = inputs['uncompressed_frame'], inputs['compressed_frame'], inputs['crf'], inputs['preset_speed']
|
|
|
|
# Convert frames to float32
|
|
uncompressed_frame = tf.cast(uncompressed_frame, tf.float16)
|
|
compressed_frame = tf.cast(compressed_frame, tf.float16)
|
|
|
|
# Embedding for preset speed
|
|
preset_speed_embedded = self.embedding(preset_speed)
|
|
preset_speed_embedded = tf.keras.layers.Flatten()(preset_speed_embedded)
|
|
|
|
# Reshaping CRF to match the shape of preset_speed_embedded
|
|
crf_expanded = tf.keras.layers.Flatten()(tf.repeat(crf, 16, axis=-1))
|
|
|
|
|
|
# Concatenating the CRF and preset speed information
|
|
integrated_info = tf.keras.layers.Concatenate(axis=-1)([crf_expanded, preset_speed_embedded])
|
|
integrated_info = self.fc(integrated_info)
|
|
|
|
# Integrate the CRF and preset speed information into the frames as additional channels (features)
|
|
_, height, width, _ = uncompressed_frame.shape
|
|
current_shape = tf.shape(inputs["uncompressed_frame"])
|
|
|
|
height = current_shape[1]
|
|
width = current_shape[2]
|
|
integrated_info_repeated = tf.tile(tf.reshape(integrated_info, [-1, 1, 1, 32]), [1, height, width, 1])
|
|
|
|
# Merge uncompressed and compressed frames
|
|
frames_merged = tf.keras.layers.Concatenate(axis=-1)([uncompressed_frame, compressed_frame, integrated_info_repeated])
|
|
|
|
compressed_representation = self.encoder(frames_merged)
|
|
reconstructed_frame = self.decoder(compressed_representation)
|
|
|
|
return reconstructed_frame
|
|
|
|
def model_summary(self):
|
|
try:
|
|
LOGGER.info("Generating model summary.")
|
|
x1 = tf.keras.Input(shape=(None, None, NUM_CHANNELS), name='uncompressed_frame')
|
|
x2 = tf.keras.Input(shape=(None, None, NUM_CHANNELS), name='compressed_frame')
|
|
x3 = tf.keras.Input(shape=(1,), name='crf')
|
|
x4 = tf.keras.Input(shape=(1,), name='preset_speed')
|
|
return tf.keras.Model(inputs=[x1, x2, x3, x4], outputs=self.call({'uncompressed_frame': x1, 'compressed_frame': x2, 'crf': x3, 'preset_speed': x4})).summary()
|
|
except Exception as e:
|
|
LOGGER.error(f"Unexpected error during model summary generation: {e}")
|
|
raise
|