This repository has been archived on 2025-05-04. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
DeepEncode/train_model.py
2023-07-30 17:29:32 +01:00

207 lines
7.6 KiB
Python

# train_model.py
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
import json
import numpy as np
import cv2
import argparse
import tensorflow as tf
from video_compression_model import NUM_CHANNELS, VideoCompressionModel, PRESET_SPEED_CATEGORIES, VideoDataGenerator
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from global_train import LOGGER
# Constants
BATCH_SIZE = 4
EPOCHS = 100
LEARNING_RATE = 0.000001
TRAIN_SAMPLES = 100
MODEL_SAVE_FILE = "models/model.tf"
MODEL_CHECKPOINT_DIR = "checkpoints"
EARLY_STOP = 10
WIDTH = 638
HEIGHT = 360
def load_video_metadata(list_path):
LOGGER.trace(f"Entering: load_video_metadata({list_path})")
try:
with open(list_path, "r") as json_file:
file = json.load(json_file)
LOGGER.trace(f"load_video_metadata returning: {file}")
return file
except FileNotFoundError:
LOGGER.error(f"Metadata file {list_path} not found.")
raise
except json.JSONDecodeError:
LOGGER.error(f"Error decoding JSON from {list_path}.")
raise
def load_video_samples(list_path, samples=TRAIN_SAMPLES):
"""
Load video samples from the metadata list.
Args:
- list_path (str): Path to the metadata JSON file.
- samples (int): Number of total samples to be extracted.
Returns:
- list: Extracted video samples.
"""
LOGGER.trace(f"Entering: load_video_samples({list_path}, {samples})" )
details_list = load_video_metadata(list_path)
all_samples = []
num_videos = len(details_list)
frames_per_video = int(samples / num_videos)
LOGGER.info(f"Loading {frames_per_video} frames from {num_videos} videos")
for video_details in details_list:
video_file = video_details["video_file"]
uncompressed_video_file = video_details["uncompressed_video_file"]
crf = video_details['crf'] / 63.0
preset_speed = PRESET_SPEED_CATEGORIES.index(video_details['preset_speed'])
video_details['preset_speed'] = preset_speed
compressed_frames, uncompressed_frames = [], []
try:
cap = cv2.VideoCapture(os.path.join(os.path.dirname(list_path), video_file))
cap_uncompressed = cv2.VideoCapture(os.path.join(os.path.dirname(list_path), uncompressed_video_file))
if not cap.isOpened() or not cap_uncompressed.isOpened():
raise RuntimeError(f"Could not open video files {video_file} or {uncompressed_video_file}, searched under: {os.path.dirname(list_path)}")
for _ in range(frames_per_video):
ret, frame_compressed = cap.read()
ret_uncompressed, frame = cap_uncompressed.read()
if not ret or not ret_uncompressed:
continue
# Check frame dimensions and resize if necessary
if frame.shape[:2] != (WIDTH, HEIGHT):
LOGGER.warn(f"Resizing video: {video_file}")
frame = cv2.resize(frame, (WIDTH, HEIGHT), interpolation=cv2.INTER_AREA)
if frame_compressed.shape[:2] != (WIDTH, HEIGHT):
LOGGER.warn(f"Resizing video: {uncompressed_video_file}")
frame_compressed = cv2.resize(frame_compressed, (WIDTH, HEIGHT), interpolation=cv2.INTER_AREA)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_compressed = cv2.cvtColor(frame_compressed, cv2.COLOR_BGR2RGB)
uncompressed_frames.append(normalize(frame))
compressed_frames.append(normalize(frame_compressed))
all_samples.extend({
"frame": frame,
"compressed_frame": frame_compressed,
"crf": crf,
"preset_speed": preset_speed,
"video_file": video_file
} for frame, frame_compressed in zip(uncompressed_frames, compressed_frames))
except Exception as e:
LOGGER.error(f"Error during video sample loading: {e}")
raise
finally:
cap.release()
cap_uncompressed.release()
return all_samples
def normalize(frame):
"""
Normalize pixel values of the frame to range [0, 1].
Args:
- frame (ndarray): Image frame.
Returns:
- ndarray: Normalized frame.
"""
LOGGER.trace(f"Normalizing frame")
return frame / 255.0
def save_model(model):
try:
LOGGER.debug("Attempting to save the model.")
os.makedirs("models", exist_ok=True)
model.save(MODEL_SAVE_FILE, save_format='tf')
LOGGER.info("Model saved successfully!")
except Exception as e:
LOGGER.error(f"Error saving the model: {e}")
raise
def main():
# Argument parsing
parser = argparse.ArgumentParser(description="Train the video compression model.")
parser.add_argument('-b', '--batch_size', type=int, default=BATCH_SIZE, help='Batch size for training.')
parser.add_argument('-e', '--epochs', type=int, default=EPOCHS, help='Number of epochs for training.')
parser.add_argument('-s', '--training_samples', type=int, default=TRAIN_SAMPLES, help='Number of training samples.')
parser.add_argument('-l', '--learning_rate', type=float, default=LEARNING_RATE, help='Learning rate for training.')
parser.add_argument('-c', '--continue_training', type=str, nargs='?', const=MODEL_SAVE_FILE, default=None, help='Path to the saved model to continue training. If used without a value, defaults to the MODEL_SAVE_FILE.')
args = parser.parse_args()
# Display training configuration
LOGGER.info("Starting the training with the given configuration.")
LOGGER.info("Training configuration:")
LOGGER.info(f"Batch size: {args.batch_size}")
LOGGER.info(f"Epochs: {args.epochs}")
LOGGER.info(f"Training samples: {args.training_samples}")
LOGGER.info(f"Learning rate: {args.learning_rate}")
LOGGER.info(f"Continue training from: {args.continue_training}")
# Load training and validation samples
LOGGER.debug("Loading training and validation samples.")
training_samples = load_video_samples("test_data/training/training.json")
validation_samples = load_video_samples("test_data/validation/validation.json", args.training_samples // 2)
train_generator = VideoDataGenerator(training_samples, args.batch_size)
val_generator = VideoDataGenerator(validation_samples, args.batch_size)
# Load or initialize model
if args.continue_training:
model = tf.keras.models.load_model(args.continue_training)
else:
model = VideoCompressionModel()
# Set optimizer and compile the model
optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate)
model.compile(loss='mean_squared_error', optimizer=optimizer)
# Define checkpoints and early stopping
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(MODEL_CHECKPOINT_DIR, "epoch-{epoch:02d}.tf"),
save_weights_only=False,
save_best_only=False,
verbose=1,
save_format="tf"
)
early_stop = EarlyStopping(monitor='val_loss', patience=EARLY_STOP, verbose=1, restore_best_weights=True)
# Train the model
LOGGER.info("Starting model training.")
model.fit(
train_generator,
steps_per_epoch=len(train_generator),
epochs=args.epochs,
validation_data=val_generator,
validation_steps=len(val_generator),
callbacks=[early_stop, checkpoint_callback]
)
LOGGER.info("Model training completed.")
save_model(model)
if __name__ == "__main__":
try:
main()
except Exception as e:
LOGGER.error(f"Unexpected error during training: {e}")
raise