182 lines
6.4 KiB
Python
182 lines
6.4 KiB
Python
# video_compression_model.py
|
|
|
|
import gc
|
|
import os
|
|
import cv2
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tensorflow.keras import layers
|
|
from featureExtraction import preprocess_frame, scale_crf, scale_speed_preset
|
|
from globalVars import DATATYPE, LOGGER, NUM_COLOUR_CHANNELS, PRESET_SPEED_CATEGORIES
|
|
|
|
if DATATYPE == tf.float16:
|
|
from tensorflow.keras.mixed_precision import Policy
|
|
|
|
policy = Policy('mixed_float16')
|
|
tf.keras.mixed_precision.set_global_policy(policy)
|
|
|
|
|
|
def is_black(frame, threshold=10):
|
|
"""Check if a frame is mostly black."""
|
|
return np.mean(frame) < threshold
|
|
|
|
|
|
def combine_batch(frame, resize=True):
|
|
return preprocess_frame(frame, resize)
|
|
|
|
|
|
def frame_generator(videos, max_frames=None):
|
|
base_dir = "test_data/validation/"
|
|
for video in videos:
|
|
cap_compressed = cv2.VideoCapture(os.path.join(base_dir, video["compressed_video_file"]))
|
|
cap_uncompressed = cv2.VideoCapture(os.path.join(base_dir, video["original_video_file"]))
|
|
|
|
frame_count = 0
|
|
while True:
|
|
ret_compressed, compressed_frame = cap_compressed.read()
|
|
ret_uncompressed, uncompressed_frame = cap_uncompressed.read()
|
|
|
|
if not ret_compressed or not ret_uncompressed:
|
|
break
|
|
|
|
# Skip black frames
|
|
if is_black(compressed_frame) or is_black(uncompressed_frame):
|
|
continue
|
|
|
|
CRF = scale_crf(video["crf"])
|
|
SPEED = scale_speed_preset(PRESET_SPEED_CATEGORIES.index(video["preset_speed"]))
|
|
|
|
validation_image = combine_batch(compressed_frame)
|
|
training_image = combine_batch(uncompressed_frame)
|
|
|
|
yield ({'image': training_image, 'CRF': CRF, 'Speed': SPEED}, validation_image)
|
|
|
|
frame_count += 1
|
|
if max_frames is not None and frame_count >= max_frames:
|
|
break
|
|
|
|
cap_compressed.release()
|
|
cap_uncompressed.release()
|
|
|
|
|
|
def create_dataset(videos, batch_size, max_frames=None):
|
|
# Determine the output signature by processing a single video to obtain its shape
|
|
video_generator_instance = frame_generator(videos, max_frames)
|
|
sample_uncompressed, sample_compressed = next(video_generator_instance)
|
|
|
|
output_signature = (
|
|
{
|
|
'image': tf.TensorSpec(shape=tf.shape(sample_uncompressed['image']), dtype=DATATYPE),
|
|
'CRF': tf.TensorSpec(shape=(), dtype=DATATYPE),
|
|
'Speed': tf.TensorSpec(shape=(), dtype=DATATYPE),
|
|
},
|
|
tf.TensorSpec(shape=tf.shape(sample_compressed), dtype=DATATYPE)
|
|
)
|
|
|
|
dataset = tf.data.Dataset.from_generator(
|
|
lambda: frame_generator(videos, max_frames),
|
|
output_signature=output_signature
|
|
)
|
|
|
|
dataset = dataset.shuffle(1000).batch(batch_size).prefetch(tf.data.AUTOTUNE)
|
|
|
|
return dataset
|
|
|
|
|
|
|
|
class SeparableTranspose2D(layers.Layer):
|
|
def __init__(self, filters, kernel_size, strides=(1, 1), padding='same', **kwargs):
|
|
super(SeparableTranspose2D, self).__init__(**kwargs)
|
|
self.filters = filters
|
|
self.kernel_size = kernel_size
|
|
self.strides = strides
|
|
self.padding = padding
|
|
|
|
# Use UpSampling2D for resizing
|
|
self.upsample = layers.UpSampling2D(size=strides)
|
|
|
|
# Depthwise convolution
|
|
self.depthwise_conv = layers.DepthwiseConv2D(kernel_size=kernel_size, padding=padding)
|
|
|
|
# Pointwise convolution
|
|
self.pointwise_conv = layers.Conv2D(filters, kernel_size=(1, 1), padding=padding)
|
|
|
|
def call(self, inputs):
|
|
x = self.upsample(inputs)
|
|
x = self.depthwise_conv(x)
|
|
x = self.pointwise_conv(x)
|
|
return x
|
|
|
|
|
|
class VideoCompressionModel(tf.keras.Model):
|
|
def __init__(self):
|
|
super(VideoCompressionModel, self).__init__()
|
|
input_shape = (None, None, NUM_COLOUR_CHANNELS)
|
|
|
|
# Encoder part of the model
|
|
self.encoder = tf.keras.Sequential([
|
|
layers.InputLayer(input_shape=input_shape),
|
|
layers.SeparableConv2D(64, (3, 3), padding='same'),
|
|
layers.LeakyReLU(),
|
|
layers.MaxPooling2D((2, 2), padding='same'),
|
|
layers.SeparableConv2D(128, (3, 3), padding='same'),
|
|
layers.LeakyReLU(),
|
|
layers.MaxPooling2D((2, 2), padding='same'),
|
|
])
|
|
|
|
# Fully connected layers for processing CRF and Speed
|
|
self.dense_crf_speed = tf.keras.Sequential([
|
|
layers.Dense(64, activation='relu'),
|
|
layers.Dense(128, activation='relu'),
|
|
])
|
|
|
|
# Decoder part of the model
|
|
self.decoder = tf.keras.Sequential([
|
|
SeparableTranspose2D(128, (3, 3), padding='same'),
|
|
layers.LeakyReLU(),
|
|
SeparableTranspose2D(64, (3, 3), padding='same'),
|
|
layers.LeakyReLU(),
|
|
layers.UpSampling2D((2, 2)),
|
|
layers.UpSampling2D((2, 2)),
|
|
layers.Conv2D(NUM_COLOUR_CHANNELS, (3, 3), padding='same', activation='sigmoid')
|
|
])
|
|
|
|
|
|
def call(self, inputs):
|
|
# Extract the image, CRF, and Speed values from the inputs dictionary
|
|
image = inputs['image']
|
|
crf = inputs['CRF']
|
|
speed = inputs['Speed']
|
|
|
|
# CRF and Speed are 1D tensors with shape [batch_size]
|
|
# Concatenate them to create a [batch_size, 2] tensor
|
|
crf_speed_vector = tf.concat([tf.expand_dims(crf, -1), tf.expand_dims(speed, -1)], axis=-1)
|
|
|
|
# Process the combined crf_speed_vector through your dense layers
|
|
# This will produce a tensor with shape [batch_size, 128]
|
|
crf_speed_features = self.dense_crf_speed(crf_speed_vector)
|
|
|
|
# Reshape the tensor to match spatial dimensions
|
|
# New shape: [batch_size, 1, 1, 128]
|
|
crf_speed_features = tf.reshape(crf_speed_features, [-1, 1, 1, 128])
|
|
|
|
# Pass the image through the encoder
|
|
encoded = self.encoder(image)
|
|
|
|
# Dynamically compute the spatial dimensions of the encoded tensor
|
|
encoded_shape = tf.shape(encoded)
|
|
height, width = encoded_shape[1], encoded_shape[2]
|
|
|
|
# Tile the crf_speed_features tensor to match the spatial dimensions of the encoded tensor
|
|
crf_speed_features = tf.tile(crf_speed_features, [1, height, width, 1])
|
|
|
|
# Concatenate the encoded tensor with the crf_speed_features tensor
|
|
combined_features = tf.concat([encoded, crf_speed_features], axis=-1)
|
|
|
|
# Pass the combined features through the decoder
|
|
decoded = self.decoder(combined_features)
|
|
|
|
return decoded
|
|
|
|
|
|
|