This repository has been archived on 2025-05-04. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
DeepEncode/train_model.py
2023-07-26 00:12:36 +01:00

162 lines
5.7 KiB
Python

import os
import json
import tensorflow as tf
import numpy as np
import cv2
from video_compression_model import NUM_CHANNELS, NUM_FRAMES, VideoCompressionModel, PRESET_SPEED_CATEGORIES
from tensorflow.keras.callbacks import EarlyStopping
print(tf.config.list_physical_devices('GPU'))
# Constants
BATCH_SIZE = 8
EPOCHS = 5
TRAIN_SAMPLES = 5
def load_list(list_path):
with open(list_path, "r") as json_file:
video_details_list = json.load(json_file)
return video_details_list
def load_frames_from_video(video_file, num_frames):
print("Extracting video frames...")
cap = cv2.VideoCapture(video_file)
frames = []
count = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
count += 1
if count >= num_frames:
break
cap.release()
width, height = frame.shape[:2]
return frames, width, height
def preprocess(frames):
return np.array(frames) / 255.0
def save_model(model, file):
os.makedirs("models", exist_ok=True)
model.save(os.path.join("models/", file))
print("Model saved successfully!")
def load_video_from_list(list_path):
details_list = load_list(list_path)
all_frames = []
all_details = []
for video_details in details_list:
VIDEO_FILE = video_details["video_file"]
CRF = video_details['crf'] / 63.0
PRESET_SPEED = PRESET_SPEED_CATEGORIES.index(video_details['preset_speed'])
video_details['preset_speed'] = PRESET_SPEED
train_frames, w, h = load_frames_from_video(os.path.join("test_data/", VIDEO_FILE), NUM_FRAMES * TRAIN_SAMPLES)
all_frames.extend(train_frames)
all_details.append({
"frames": train_frames,
"width": w,
"height": h,
"crf": CRF,
"preset_speed": PRESET_SPEED,
"video_file": VIDEO_FILE
})
return all_details
def generate_frame_sequences(frames):
sequences = []
labels = []
for i in range(len(frames) - NUM_FRAMES + 1):
sequence = frames[i:i+NUM_FRAMES-1]
sequences.append(sequence)
labels.append(sequence[-1])
return np.array(sequences), np.array(labels)
def frame_difference(frames):
differences = []
for i in range(1, len(frames)):
differences.append(cv2.absdiff(frames[i], frames[i-1]))
return differences
def main():
all_video_details_train = load_video_from_list("test_data/training.json")
all_video_details_val = load_video_from_list("test_data/validation.json")
model = VideoCompressionModel(NUM_CHANNELS, NUM_FRAMES)
model.compile(loss='mean_squared_error', optimizer='adam')
early_stop = EarlyStopping(monitor='val_loss', patience=3, verbose=1, restore_best_weights=True)
# Load and concatenate all sequences and labels
all_train_sequences = []
all_val_sequences = []
all_train_labels = []
all_val_labels = []
all_crf_train = []
all_crf_val = []
all_preset_speed_train = []
all_preset_speed_val = []
for video_details_train, video_details_val in zip(all_video_details_train, all_video_details_val):
train_frames = video_details_train["frames"]
val_frames = video_details_val["frames"]
train_differences = frame_difference(preprocess(train_frames))
val_differences = frame_difference(preprocess(val_frames))
#print(len(train_differences), train_differences[0].shape)
train_sequences, train_labels = generate_frame_sequences(train_differences)
val_sequences, val_labels = generate_frame_sequences(val_differences)
crf_array_train = np.full((len(train_sequences), 1), video_details_train['crf'])
crf_array_val = np.full((len(val_sequences), 1), video_details_val['crf'])
preset_speed_array_train = np.full((len(train_sequences), 1), video_details_train['preset_speed'])
preset_speed_array_val = np.full((len(val_sequences), 1), video_details_val['preset_speed'])
all_train_sequences.extend(train_sequences)
all_val_sequences.extend(val_sequences)
all_train_labels.extend(train_labels)
all_val_labels.extend(val_labels)
all_crf_train.extend(crf_array_train)
all_crf_val.extend(crf_array_val)
all_preset_speed_train.extend(preset_speed_array_train)
all_preset_speed_val.extend(preset_speed_array_val)
# Convert lists to numpy arrays
all_train_sequences = np.array(all_train_sequences)
all_val_sequences = np.array(all_val_sequences)
all_train_labels = np.array(all_train_labels)
all_val_labels = np.array(all_val_labels)
all_crf_train = np.array(all_crf_train)
all_crf_val = np.array(all_crf_val)
all_preset_speed_train = np.array(all_preset_speed_train)
all_preset_speed_val = np.array(all_preset_speed_val)
# Shuffle the training data
indices_train = np.arange(all_train_sequences.shape[0])
np.random.shuffle(indices_train)
all_train_sequences = all_train_sequences[indices_train]
all_train_labels = all_train_labels[indices_train]
all_crf_train = all_crf_train[indices_train]
all_preset_speed_train = all_preset_speed_train[indices_train]
print("\nTraining the model on mixed sequences...")
model.fit(
{"frames": all_train_sequences, "crf": all_crf_train, "preset_speed": all_preset_speed_train},
all_train_labels,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_data=({"frames": all_val_sequences, "crf": all_crf_val, "preset_speed": all_preset_speed_val}, all_val_labels),
callbacks=[early_stop]
)
print("\nTraining completed!")
save_model(model, 'model_differencing.keras')
if __name__ == "__main__":
main()