114 lines
5 KiB
Python
114 lines
5 KiB
Python
# video_compression_model.py
|
|
|
|
import os
|
|
import cv2
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from featureExtraction import preprocess_frame, scale_crf, scale_speed_preset
|
|
from globalVars import HEIGHT, LOGGER, NUM_COLOUR_CHANNELS, NUM_PRESET_SPEEDS, PRESET_SPEED_CATEGORIES, WIDTH
|
|
|
|
|
|
#from tensorflow.keras.mixed_precision import Policy
|
|
|
|
#policy = Policy('mixed_float16')
|
|
#tf.keras.mixed_precision.set_global_policy(policy)
|
|
|
|
def combine_batch(frame, crf, speed, include_controls=True, resize=True):
|
|
processed_frame = preprocess_frame(frame, resize)
|
|
height, width, _ = processed_frame.shape
|
|
|
|
combined = [processed_frame]
|
|
if include_controls:
|
|
crf_array = np.full((height, width, 1), crf)
|
|
speed_array = np.full((height, width, 1), speed)
|
|
combined.extend([crf_array, speed_array])
|
|
|
|
return np.concatenate(combined, axis=-1)
|
|
|
|
|
|
def data_generator(videos, batch_size):
|
|
# Infinite loop to keep generating batches
|
|
while True:
|
|
# Iterate over each video
|
|
for video_details in videos:
|
|
# Get the paths for compressed and original (uncompressed) video files
|
|
base_dir = os.path.dirname("test_data/validation/validation.json")
|
|
video_path = os.path.join(base_dir, video_details["compressed_video_file"])
|
|
uncompressed_video_path = os.path.join(base_dir, video_details["original_video_file"])
|
|
|
|
CRF = scale_crf(video_details["crf"])
|
|
SPEED = scale_speed_preset(PRESET_SPEED_CATEGORIES.index(video_details["preset_speed"]))
|
|
|
|
# Open the video files
|
|
cap_compressed = cv2.VideoCapture(video_path)
|
|
cap_uncompressed = cv2.VideoCapture(uncompressed_video_path)
|
|
|
|
# Lists to store the processed frames
|
|
compressed_frame_batch = [] # Input data (Target)
|
|
uncompressed_frame_batch = [] # Target data (Training)
|
|
|
|
# Read and process frames from both videos
|
|
while cap_compressed.isOpened() and cap_uncompressed.isOpened():
|
|
ret_compressed, compressed_frame = cap_compressed.read()
|
|
ret_uncompressed, uncompressed_frame = cap_uncompressed.read()
|
|
if not ret_compressed or not ret_uncompressed:
|
|
break
|
|
|
|
# Target data
|
|
compressed_combined = combine_batch(compressed_frame, CRF, SPEED, include_controls=False)
|
|
|
|
# Input data
|
|
uncompressed_combined = combine_batch(uncompressed_frame, 0, scale_speed_preset(PRESET_SPEED_CATEGORIES.index("veryslow")))
|
|
|
|
# Append processed frames to batches
|
|
compressed_frame_batch.append(compressed_combined)
|
|
uncompressed_frame_batch.append(uncompressed_combined)
|
|
|
|
# If batch is complete, yield it
|
|
if len(compressed_frame_batch) == batch_size:
|
|
yield (np.array(uncompressed_frame_batch), np.array(compressed_frame_batch)) # Yielding Training and Target data
|
|
compressed_frame_batch = []
|
|
uncompressed_frame_batch = []
|
|
|
|
# Release video files
|
|
cap_compressed.release()
|
|
cap_uncompressed.release()
|
|
|
|
# If there are frames left that don't fill a whole batch, send them anyway
|
|
if len(compressed_frame_batch) > 0:
|
|
yield (np.array(uncompressed_frame_batch), np.array(compressed_frame_batch))
|
|
|
|
class VideoCompressionModel(tf.keras.Model):
|
|
def __init__(self):
|
|
super(VideoCompressionModel, self).__init__()
|
|
LOGGER.debug("Initializing VideoCompressionModel.")
|
|
|
|
# Input shape (includes channels for CRF and SPEED_PRESET)
|
|
input_shape_with_histogram = (None, None, NUM_COLOUR_CHANNELS + 2)
|
|
|
|
# Encoder part of the model
|
|
self.encoder = tf.keras.Sequential([
|
|
tf.keras.layers.InputLayer(input_shape=input_shape_with_histogram),
|
|
tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
|
|
tf.keras.layers.MaxPooling2D((2, 2), padding='same'),
|
|
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same'),
|
|
tf.keras.layers.MaxPooling2D((2, 2), padding='same')
|
|
])
|
|
|
|
# Decoder part of the model
|
|
self.decoder = tf.keras.Sequential([
|
|
tf.keras.layers.Conv2DTranspose(32, (3, 3), activation='relu', padding='same'),
|
|
tf.keras.layers.UpSampling2D((2, 2)),
|
|
tf.keras.layers.Conv2DTranspose(64, (3, 3), activation='relu', padding='same'),
|
|
tf.keras.layers.UpSampling2D((2, 2)),
|
|
tf.keras.layers.Conv2DTranspose(NUM_COLOUR_CHANNELS, (3, 3), activation='sigmoid', padding='same')
|
|
])
|
|
|
|
def call(self, inputs):
|
|
#print("Input shape:", inputs.shape)
|
|
encoded = self.encoder(inputs)
|
|
#print("Encoded shape:", encoded.shape)
|
|
decoded = self.decoder(encoded)
|
|
#print("Decoded shape:", decoded.shape)
|
|
return decoded
|
|
|