import os import json import tensorflow as tf import numpy as np import cv2 from video_compression_model import NUM_FRAMES, VideoCompressionModel, PRESET_SPEED_CATEGORIES # Constants NUM_CHANNELS = 3 # Number of color channels in the video frames (RGB images have 3 channels) BATCH_SIZE = 16 # Batch size used during training EPOCHS = 1 # Number of training epochs TRAIN_SAMPLES = 1 # number of frames to extract # Step 1: Data Preparation def load_list(list_path): with open(list_path, "r") as json_file: video_details_list = json.load(json_file) return video_details_list # Update load_frames_from_video function to resize frames def load_frames_from_video(video_file, num_frames): print("Extracting video frames...") cap = cv2.VideoCapture(video_file) frames = [] count = 0 while True: ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) #frame = cv2.resize(frame, (target_width, target_height)) frames.append(frame) count += 1 if count >= num_frames: break cap.release() width, height = frame.shape[:2] return frames, width, height def preprocess(frames): return np.array(frames) / 255.0 def save_model(model, file): os.makedirs("models", exist_ok=True) model.save(os.path.join("models/", file)) print("Model saved successfully!") # Update load_video_from_list function to provide target_width and target_height def load_video_from_list(list_path): details_list = load_list(list_path) all_frames = [] all_details = [] for video_details in details_list: VIDEO_FILE = video_details["video_file"] CRF = video_details['crf'] / 63.0 PRESET_SPEED = PRESET_SPEED_CATEGORIES.index(video_details['preset_speed']) video_details['preset_speed'] = PRESET_SPEED # Update load_frames_from_video calls with target_width and target_height #train_frames, w, h = load_frames_from_video(os.path.join("test_data/", VIDEO_FILE), TRAIN_SAMPLES, target_width, target_height) train_frames, w, h = load_frames_from_video(os.path.join("test_data/", VIDEO_FILE), NUM_FRAMES * TRAIN_SAMPLES) all_frames.extend(train_frames) all_details.append({ "frames": train_frames, "width": w, "height": h, "crf": CRF, "preset_speed": PRESET_SPEED, "video_file": VIDEO_FILE }) return all_details def generate_frame_sequences(frames): # Generate sequences of frames for the model sequences = [] labels = [] for i in range(len(frames) - NUM_FRAMES + 1): sequence = frames[i:i+NUM_FRAMES] sequences.append(sequence) # Use the last frame of the sequence as the label labels.append(sequence[-1]) return np.array(sequences), np.array(labels) def main(): #target_width = 640 # Choose a fixed width for the frames #target_height = 360 # Choose a fixed height for the frames all_video_details = load_video_from_list("test_data/training.json") model = VideoCompressionModel(NUM_CHANNELS, NUM_FRAMES) model.compile(loss='mean_squared_error', optimizer='adam') for video_details in all_video_details: train_frames = video_details["frames"] val_frames = train_frames.copy() # For simplicity, using the same frames for validation train_frames = preprocess(train_frames) val_frames = preprocess(val_frames) train_sequences, train_labels = generate_frame_sequences(train_frames) val_sequences, val_labels = generate_frame_sequences(val_frames) num_sequences = len(train_sequences) crf_array = np.full((num_sequences, 1), video_details['crf']) preset_speed_array = np.full((num_sequences, 1), video_details['preset_speed']) print("\nTraining the model for video:", video_details["video_file"]) model.fit( {"frames": train_sequences, "crf": crf_array, "preset_speed": preset_speed_array}, train_labels, # Use train_labels as the ground truth batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=({"frames": val_sequences, "crf": crf_array, "preset_speed": preset_speed_array}, val_labels) # Use val_labels as the ground truth for validation ) print("\nTraining completed for video:", video_details["video_file"]) save_model(model, 'model.keras') if __name__ == "__main__": main()