import tensorflow as tf class VideoCompressionModel(tf.keras.Model): def __init__(self, NUM_CHANNELS=3): super(VideoCompressionModel, self).__init__() # Encoder layers self.encoder = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(None, None, NUM_CHANNELS)), # Add more encoder layers as needed ]) # Decoder layers self.decoder = tf.keras.Sequential([ tf.keras.layers.Conv2DTranspose(32, (3, 3), activation='relu', padding='same'), # Add more decoder layers as needed tf.keras.layers.Conv2D(NUM_CHANNELS, (3, 3), activation='sigmoid', padding='same') # Output layer for video frames ]) def call(self, inputs): # Encoding the video frames compressed_representation = self.encoder(inputs) # Decoding to generate compressed video frames reconstructed_frames = self.decoder(compressed_representation) return reconstructed_frames