import tensorflow as tf import numpy as np import cv2 from video_compression_model import VideoCompressionModel # Constants NUM_CHANNELS = 3 # Step 2: Load the trained model model = tf.keras.models.load_model('models/model.keras', custom_objects={'VideoCompressionModel': VideoCompressionModel}) # Step 3: Load the uncompressed video UNCOMPRESSED_VIDEO_FILE = 'test_data/test_video.mkv' def load_frames_from_video(video_file, num_frames = 0): print("Extracting video frames...") cap = cv2.VideoCapture(video_file) frames = [] count = 0 while True: ret, frame = cap.read() if not ret: print("Max frames from file reached") break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frames.append(frame) count += 1 if num_frames == 0 or count >= num_frames: print("Max Frames wanted reached: ", num_frames) break cap.release() print("Extraction Complete") return frames uncompressed_frames = load_frames_from_video(UNCOMPRESSED_VIDEO_FILE, 200) if len(uncompressed_frames) == 0 or None: print("IO ERROR!") exit() uncompressed_frames = np.array(uncompressed_frames) / 255.0 if len(uncompressed_frames) == 0 or None: print("np.array ERROR!") exit() # Step 4: Compress the video frames using the loaded model compressed_frames = model.predict(uncompressed_frames) # Step 5: Save the compressed video frames COMPRESSED_VIDEO_FILE = 'compressed_video.mkv' def save_frames_as_video(frames, video_file): print("Saving video frames...") height, width = frames[0].shape[:2] fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter(video_file, fourcc, 24.0, (width, height)) for frame in frames: frame = np.clip(frame * 255.0, 0, 255).astype(np.uint8) frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) out.write(frame) out.release() save_frames_as_video(compressed_frames, COMPRESSED_VIDEO_FILE) print("Compression completed.")