This commit is contained in:
Jordon Brooks 2023-08-13 13:33:03 +01:00
parent 1d98bc84a2
commit fde856f3ec
6 changed files with 107 additions and 109 deletions

2
.gitignore vendored
View file

@ -12,5 +12,7 @@
!video_compression_model.py !video_compression_model.py
!global_train.py !global_train.py
!log.py !log.py
!featureExtraction.py
!globalVars.py
!test_data/training/training.json !test_data/training/training.json
!test_data/validation/validation.json !test_data/validation/validation.json

View file

@ -2,22 +2,22 @@
import os import os
from featureExtraction import preprocess_frame
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
import tensorflow as tf import tensorflow as tf
import numpy as np import numpy as np
import cv2 import cv2
from video_compression_model import PRESET_SPEED_CATEGORIES, VideoCompressionModel from video_compression_model import VideoCompressionModel
# Constants # Constants
CHUNK_SIZE = 24 # Adjust based on available memory and video resolution CHUNK_SIZE = 24 # Adjust based on available memory and video resolution
COMPRESSED_VIDEO_FILE = 'compressed_video.avi' COMPRESSED_VIDEO_FILE = 'compressed_video.avi'
MAX_FRAMES = 0 # Limit the number of frames processed MAX_FRAMES = 0 # Limit the number of frames processed
CRF = 24.0 # Example CRF value
PRESET_SPEED = "veryslow" # Index for "fast" in our defined list
# Load the trained model # Load the trained model
model = tf.keras.models.load_model('models/model.tf', custom_objects={'VideoCompressionModel': VideoCompressionModel}) MODEL = tf.keras.models.load_model('models/model.tf', custom_objects={'VideoCompressionModel': VideoCompressionModel})
# Load the uncompressed video # Load the uncompressed video
UNCOMPRESSED_VIDEO_FILE = 'test_data/training_video.mkv' UNCOMPRESSED_VIDEO_FILE = 'test_data/training_video.mkv'
@ -28,39 +28,27 @@ def load_frame_from_video(video_file, frame_num):
ret, frame = cap.read() ret, frame = cap.read()
if not ret: if not ret:
return None return None
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0 # Normalize and convert to float32 #frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
cap.release() cap.release()
return frame return frame
def predict_frame(uncompressed_frame, model, crf_value, preset_speed_value): def predict_frame(uncompressed_frame):
crf_array = np.array([crf_value])
preset_speed_array = np.array([preset_speed_value])
crf_array = np.expand_dims(np.array([crf_value]), axis=-1) # Shape: (1, 1)
preset_speed_array = np.expand_dims(np.array([preset_speed_value]), axis=-1) # Shape: (1, 1)
#display_frame = np.clip(cv2.cvtColor(uncompressed_frame, cv2.COLOR_BGR2RGB) * 255.0, 0, 255).astype(np.uint8)
cv2.imshow("uncomp", uncompressed_frame)
cv2.waitKey(1)
# Expand dimensions to include batch size combined_feature, _ = preprocess_frame(uncompressed_frame)
uncompressed_frame = np.expand_dims(uncompressed_frame, 0)
#display_frame = np.clip(cv2.cvtColor(uncompressed_frame[0], cv2.COLOR_BGR2RGB) * 255.0, 0, 255).astype(np.uint8)
#cv2.imshow("uncomp", display_frame)
#cv2.waitKey(0)
compressed_frame = model.predict({ compressed_frame = MODEL.predict(np.expand_dims(combined_feature, axis=0))[0]
"compressed_frame": uncompressed_frame,
"uncompressed_frame": uncompressed_frame,
"crf": crf_array,
"preset_speed": preset_speed_array
})
display_frame = np.clip(cv2.cvtColor(compressed_frame[0], cv2.COLOR_BGR2RGB) * 255.0, 0, 255).astype(np.uint8) display_frame = np.clip(cv2.cvtColor(compressed_frame, cv2.COLOR_BGR2RGB) * 255.0, 0, 255).astype(np.uint8)
cv2.imshow("comp", display_frame) cv2.imshow("comp", display_frame)
cv2.waitKey(1) cv2.waitKey(1)
return compressed_frame[0] return compressed_frame
cap = cv2.VideoCapture(UNCOMPRESSED_VIDEO_FILE) cap = cv2.VideoCapture(UNCOMPRESSED_VIDEO_FILE)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
@ -79,7 +67,7 @@ if MAX_FRAMES != 0 and total_frames > MAX_FRAMES:
for i in range(total_frames): for i in range(total_frames):
uncompressed_frame = load_frame_from_video(UNCOMPRESSED_VIDEO_FILE, frame_num=i) uncompressed_frame = load_frame_from_video(UNCOMPRESSED_VIDEO_FILE, frame_num=i)
compressed_frame = predict_frame(uncompressed_frame, model, CRF, PRESET_SPEED_CATEGORIES.index(PRESET_SPEED)) compressed_frame = predict_frame(uncompressed_frame)
compressed_frame = np.clip(compressed_frame * 255.0, 0, 255).astype(np.uint8) compressed_frame = np.clip(compressed_frame * 255.0, 0, 255).astype(np.uint8)
compressed_frame = cv2.cvtColor(compressed_frame, cv2.COLOR_RGB2BGR) compressed_frame = cv2.cvtColor(compressed_frame, cv2.COLOR_RGB2BGR)

48
featureExtraction.py Normal file
View file

@ -0,0 +1,48 @@
# featureExtraction.py
import cv2
import numpy as np
from globalVars import HEIGHT, WIDTH
def extract_edge_features(frame):
"""
Extract edge features using Canny edge detection.
Args:
- frame (ndarray): Image frame.
Returns:
- ndarray: Edge feature map.
"""
edges = cv2.Canny(frame, threshold1=100, threshold2=200)
return edges.astype(np.float32) / 255.0
def extract_histogram_features(frame, bins=64):
"""
Extract histogram features from a frame.
Args:
- frame (ndarray): Image frame.
- bins (int): Number of bins for the histogram.
Returns:
- ndarray: Normalized histogram feature vector.
"""
histogram, _ = np.histogram(frame.flatten(), bins=bins, range=[0, 255])
return histogram.astype(np.float32) / frame.size
def preprocess_frame(frame):
# Check frame dimensions and resize if necessary
if frame.shape[:2] != (HEIGHT, WIDTH):
frame = cv2.resize(frame, (WIDTH, HEIGHT), interpolation=cv2.INTER_NEAREST)
# Extract features
edge_feature = extract_edge_features(frame)
histogram_feature = extract_histogram_features(frame)
histogram_feature_image = np.full((HEIGHT, WIDTH), histogram_feature.mean()) # Convert histogram feature to image-like shape
combined_feature = np.stack([edge_feature, histogram_feature_image], axis=-1)
compressed_frame = frame / 255.0 # Assuming the frame is uint8, scale to [0, 1]
return combined_feature, compressed_frame

View file

@ -1,3 +1,7 @@
import log import log
LOGGER = log.Logger(level="DEBUG", logfile="training.log", reset_logfile=True) LOGGER = log.Logger(level="DEBUG", logfile="training.log", reset_logfile=True)
NUM_CHANNELS = 3
WIDTH = 640
HEIGHT = 360

View file

@ -4,12 +4,14 @@ import os
import cv2 import cv2
import numpy as np import numpy as np
from train_model_V2 import VideoCompressionModel
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
import tensorflow as tf import tensorflow as tf
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from global_train import LOGGER from video_compression_model import VideoCompressionModel, data_generator
from globalVars import HEIGHT, WIDTH, LOGGER
# Constants # Constants
BATCH_SIZE = 16 BATCH_SIZE = 16
@ -18,10 +20,6 @@ LEARNING_RATE = 0.01
MODEL_SAVE_FILE = "models/model.tf" MODEL_SAVE_FILE = "models/model.tf"
MODEL_CHECKPOINT_DIR = "checkpoints" MODEL_CHECKPOINT_DIR = "checkpoints"
EARLY_STOP = 10 EARLY_STOP = 10
NUM_CHANNELS = 3
WIDTH = 640
HEIGHT = 360
def save_model(model): def save_model(model):
try: try:
@ -33,34 +31,6 @@ def save_model(model):
LOGGER.error(f"Error saving the model: {e}") LOGGER.error(f"Error saving the model: {e}")
raise raise
def extract_edge_features(frame):
"""
Extract edge features using Canny edge detection.
Args:
- frame (ndarray): Image frame.
Returns:
- ndarray: Edge feature map.
"""
edges = cv2.Canny(frame, threshold1=100, threshold2=200)
return edges.astype(np.float32) / 255.0
def extract_histogram_features(frame, bins=64):
"""
Extract histogram features from a frame.
Args:
- frame (ndarray): Image frame.
- bins (int): Number of bins for the histogram.
Returns:
- ndarray: Normalized histogram feature vector.
"""
histogram, _ = np.histogram(frame.flatten(), bins=bins, range=[0, 255])
return histogram.astype(np.float32) / frame.size
def load_video_metadata(list_path): def load_video_metadata(list_path):
""" """
@ -85,57 +55,16 @@ def load_video_metadata(list_path):
except json.JSONDecodeError: except json.JSONDecodeError:
LOGGER.error(f"Error decoding JSON from {list_path}.") LOGGER.error(f"Error decoding JSON from {list_path}.")
raise raise
def data_generator(videos, batch_size):
while True:
for video_details in videos:
video_path = os.path.join(os.path.dirname("test_data/validation/validation.json"), video_details["compressed_video_file"])
cap = cv2.VideoCapture(video_path)
feature_batch = []
compressed_frame_batch = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Check frame dimensions and resize if necessary
if frame.shape[:2] != (HEIGHT, WIDTH):
frame = cv2.resize(frame, (WIDTH, HEIGHT), interpolation=cv2.INTER_NEAREST)
# Extract features
edge_feature = extract_edge_features(frame)
histogram_feature = extract_histogram_features(frame)
histogram_feature_image = np.full((HEIGHT, WIDTH), histogram_feature.mean()) # Convert histogram feature to image-like shape
combined_feature = np.stack([edge_feature, histogram_feature_image], axis=-1)
compressed_frame = frame / 255.0 # Assuming the frame is uint8, scale to [0, 1]
feature_batch.append(combined_feature)
compressed_frame_batch.append(compressed_frame)
if len(feature_batch) == batch_size:
yield (np.array(feature_batch), np.array(compressed_frame_batch))
feature_batch = []
compressed_frame_batch = []
cap.release()
# If there are frames left that don't fill a whole batch, send them anyway
if len(feature_batch) > 0:
yield (np.array(feature_batch), np.array(compressed_frame_batch))
def main(): def main():
global BATCH_SIZE, EPOCHS, TRAIN_SAMPLES, LEARNING_RATE, MODEL_SAVE_FILE global BATCH_SIZE, EPOCHS, LEARNING_RATE, MODEL_SAVE_FILE
# Argument parsing # Argument parsing
parser = argparse.ArgumentParser(description="Train the video compression model.") parser = argparse.ArgumentParser(description="Train the video compression model.")
parser.add_argument('-b', '--batch_size', type=int, default=BATCH_SIZE, help='Batch size for training.') parser.add_argument('-b', '--batch_size', type=int, default=BATCH_SIZE, help='Batch size for training.')
parser.add_argument('-e', '--epochs', type=int, default=EPOCHS, help='Number of epochs for training.') parser.add_argument('-e', '--epochs', type=int, default=EPOCHS, help='Number of epochs for training.')
parser.add_argument('-l', '--learning_rate', type=float, default=LEARNING_RATE, help='Learning rate for training.') parser.add_argument('-l', '--learning_rate', type=float, default=LEARNING_RATE, help='Learning rate for training.')
parser.add_argument('-c', '--continue_training', type=str, nargs='?', const=MODEL_SAVE_FILE, default=None, help='Path to the saved model to continue training. If used without a value, defaults to the MODEL_SAVE_FILE.') parser.add_argument('-c', '--continue_training', type=str, nargs='?', const=MODEL_SAVE_FILE, default=None, help='Path to the saved model to continue training. If used without a value, defaults to the MODEL_SAVE_FILE.')
args = parser.parse_args() args = parser.parse_args()
BATCH_SIZE = args.batch_size BATCH_SIZE = args.batch_size

View file

@ -1,23 +1,50 @@
# video_compression_model.py # video_compression_model.py
import os
import cv2 import cv2
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from featureExtraction import preprocess_frame
from global_train import LOGGER from globalVars import HEIGHT, LOGGER, WIDTH
PRESET_SPEED_CATEGORIES = ["ultrafast", "superfast", "veryfast", "faster", "fast", "medium", "slow", "slower", "veryslow"] #PRESET_SPEED_CATEGORIES = ["ultrafast", "superfast", "veryfast", "faster", "fast", "medium", "slow", "slower", "veryslow"]
NUM_PRESET_SPEEDS = len(PRESET_SPEED_CATEGORIES) #NUM_PRESET_SPEEDS = len(PRESET_SPEED_CATEGORIES)
NUM_CHANNELS = 3
WIDTH = 640
HEIGHT = 360
#from tensorflow.keras.mixed_precision import Policy #from tensorflow.keras.mixed_precision import Policy
#policy = Policy('mixed_float16') #policy = Policy('mixed_float16')
#tf.keras.mixed_precision.set_global_policy(policy) #tf.keras.mixed_precision.set_global_policy(policy)
def data_generator(videos, batch_size):
while True:
for video_details in videos:
video_path = os.path.join(os.path.dirname("test_data/validation/validation.json"), video_details["compressed_video_file"])
cap = cv2.VideoCapture(video_path)
feature_batch = []
compressed_frame_batch = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
combined_feature, compressed_frame = preprocess_frame(frame)
feature_batch.append(combined_feature)
compressed_frame_batch.append(compressed_frame)
if len(feature_batch) == batch_size:
yield (np.array(feature_batch), np.array(compressed_frame_batch))
feature_batch = []
compressed_frame_batch = []
cap.release()
# If there are frames left that don't fill a whole batch, send them anyway
if len(feature_batch) > 0:
yield (np.array(feature_batch), np.array(compressed_frame_batch))
class VideoCompressionModel(tf.keras.Model): class VideoCompressionModel(tf.keras.Model):
def __init__(self): def __init__(self):