This commit is contained in:
Jordon Brooks 2023-08-13 13:33:03 +01:00
parent 1d98bc84a2
commit fde856f3ec
6 changed files with 107 additions and 109 deletions

View file

@ -4,12 +4,14 @@ import os
import cv2
import numpy as np
from train_model_V2 import VideoCompressionModel
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
import tensorflow as tf
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from global_train import LOGGER
from video_compression_model import VideoCompressionModel, data_generator
from globalVars import HEIGHT, WIDTH, LOGGER
# Constants
BATCH_SIZE = 16
@ -18,10 +20,6 @@ LEARNING_RATE = 0.01
MODEL_SAVE_FILE = "models/model.tf"
MODEL_CHECKPOINT_DIR = "checkpoints"
EARLY_STOP = 10
NUM_CHANNELS = 3
WIDTH = 640
HEIGHT = 360
def save_model(model):
try:
@ -33,34 +31,6 @@ def save_model(model):
LOGGER.error(f"Error saving the model: {e}")
raise
def extract_edge_features(frame):
"""
Extract edge features using Canny edge detection.
Args:
- frame (ndarray): Image frame.
Returns:
- ndarray: Edge feature map.
"""
edges = cv2.Canny(frame, threshold1=100, threshold2=200)
return edges.astype(np.float32) / 255.0
def extract_histogram_features(frame, bins=64):
"""
Extract histogram features from a frame.
Args:
- frame (ndarray): Image frame.
- bins (int): Number of bins for the histogram.
Returns:
- ndarray: Normalized histogram feature vector.
"""
histogram, _ = np.histogram(frame.flatten(), bins=bins, range=[0, 255])
return histogram.astype(np.float32) / frame.size
def load_video_metadata(list_path):
"""
@ -85,57 +55,16 @@ def load_video_metadata(list_path):
except json.JSONDecodeError:
LOGGER.error(f"Error decoding JSON from {list_path}.")
raise
def data_generator(videos, batch_size):
while True:
for video_details in videos:
video_path = os.path.join(os.path.dirname("test_data/validation/validation.json"), video_details["compressed_video_file"])
cap = cv2.VideoCapture(video_path)
feature_batch = []
compressed_frame_batch = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Check frame dimensions and resize if necessary
if frame.shape[:2] != (HEIGHT, WIDTH):
frame = cv2.resize(frame, (WIDTH, HEIGHT), interpolation=cv2.INTER_NEAREST)
# Extract features
edge_feature = extract_edge_features(frame)
histogram_feature = extract_histogram_features(frame)
histogram_feature_image = np.full((HEIGHT, WIDTH), histogram_feature.mean()) # Convert histogram feature to image-like shape
combined_feature = np.stack([edge_feature, histogram_feature_image], axis=-1)
compressed_frame = frame / 255.0 # Assuming the frame is uint8, scale to [0, 1]
feature_batch.append(combined_feature)
compressed_frame_batch.append(compressed_frame)
if len(feature_batch) == batch_size:
yield (np.array(feature_batch), np.array(compressed_frame_batch))
feature_batch = []
compressed_frame_batch = []
cap.release()
# If there are frames left that don't fill a whole batch, send them anyway
if len(feature_batch) > 0:
yield (np.array(feature_batch), np.array(compressed_frame_batch))
def main():
global BATCH_SIZE, EPOCHS, TRAIN_SAMPLES, LEARNING_RATE, MODEL_SAVE_FILE
global BATCH_SIZE, EPOCHS, LEARNING_RATE, MODEL_SAVE_FILE
# Argument parsing
parser = argparse.ArgumentParser(description="Train the video compression model.")
parser.add_argument('-b', '--batch_size', type=int, default=BATCH_SIZE, help='Batch size for training.')
parser.add_argument('-e', '--epochs', type=int, default=EPOCHS, help='Number of epochs for training.')
parser.add_argument('-l', '--learning_rate', type=float, default=LEARNING_RATE, help='Learning rate for training.')
parser.add_argument('-c', '--continue_training', type=str, nargs='?', const=MODEL_SAVE_FILE, default=None, help='Path to the saved model to continue training. If used without a value, defaults to the MODEL_SAVE_FILE.')
args = parser.parse_args()
BATCH_SIZE = args.batch_size