model now uses tensorflow dataset generator
This commit is contained in:
parent
ba6c132c67
commit
f06d3ae504
2 changed files with 84 additions and 48 deletions
|
@ -27,7 +27,7 @@ if gpus:
|
|||
print(e)
|
||||
|
||||
|
||||
from video_compression_model import VideoCompressionModel, data_generator
|
||||
from video_compression_model import VideoCompressionModel, create_dataset
|
||||
|
||||
from globalVars import HEIGHT, WIDTH, MAX_FRAMES, LOGGER
|
||||
|
||||
|
@ -43,7 +43,7 @@ EARLY_STOP = 5
|
|||
|
||||
class GarbageCollectorCallback(Callback):
|
||||
def on_epoch_end(self, epoch, logs=None):
|
||||
LOGGER.debug(f"Collecting garbage")
|
||||
LOGGER.debug(f"GC")
|
||||
gc.collect()
|
||||
|
||||
def save_model(model):
|
||||
|
@ -120,6 +120,10 @@ def main():
|
|||
split_index = int(0.8 * len(all_videos))
|
||||
training_videos = all_videos[:split_index]
|
||||
validation_videos = all_videos[split_index:]
|
||||
|
||||
training_dataset = create_dataset(training_videos, BATCH_SIZE, MAX_FRAMES)
|
||||
validation_dataset = create_dataset(validation_videos, BATCH_SIZE, MAX_FRAMES)
|
||||
|
||||
|
||||
if args.continue_training:
|
||||
model = tf.keras.models.load_model(args.continue_training)
|
||||
|
@ -154,26 +158,24 @@ def main():
|
|||
gc_callback = GarbageCollectorCallback()
|
||||
|
||||
# Calculate steps per epoch for training and validation
|
||||
if MAX_FRAMES <= 0:
|
||||
average_frames_per_video = 2880 # Given 2 minutes @ 24 fps
|
||||
else:
|
||||
average_frames_per_video = max(MAX_FRAMES, 0)
|
||||
#if MAX_FRAMES <= 0:
|
||||
# average_frames_per_video = 2880 # Given 2 minutes @ 24 fps
|
||||
#else:
|
||||
# average_frames_per_video = max(MAX_FRAMES, 0)
|
||||
|
||||
total_frames_train = average_frames_per_video * len(training_videos)
|
||||
total_frames_validation = average_frames_per_video * len(validation_videos)
|
||||
steps_per_epoch_train = total_frames_train // BATCH_SIZE
|
||||
steps_per_epoch_validation = total_frames_validation // BATCH_SIZE
|
||||
#total_frames_train = average_frames_per_video * len(training_videos)
|
||||
#total_frames_validation = average_frames_per_video * len(validation_videos)
|
||||
#steps_per_epoch_train = total_frames_train // BATCH_SIZE
|
||||
#steps_per_epoch_validation = total_frames_validation // BATCH_SIZE
|
||||
|
||||
gc.collect()
|
||||
|
||||
# Train the model
|
||||
LOGGER.info("Starting model training.")
|
||||
model.fit(
|
||||
data_generator(training_videos, BATCH_SIZE),
|
||||
epochs=EPOCHS,
|
||||
steps_per_epoch=steps_per_epoch_train,
|
||||
validation_data=data_generator(validation_videos, BATCH_SIZE), # Add validation data here
|
||||
validation_steps=steps_per_epoch_validation, # Add validation steps here
|
||||
training_dataset,
|
||||
epochs=EPOCHS,
|
||||
validation_data=validation_dataset, # Add validation data here
|
||||
callbacks=[early_stop, checkpoint_callback, gc_callback]
|
||||
)
|
||||
LOGGER.info("Model training completed.")
|
||||
|
|
Reference in a new issue