Black and white

This commit is contained in:
Jordon Brooks 2023-08-13 18:53:21 +01:00
parent 93ef52e66f
commit e7af02cb4f
3 changed files with 34 additions and 22 deletions

View file

@ -3,6 +3,7 @@
import os import os
from featureExtraction import preprocess_frame from featureExtraction import preprocess_frame
from globalVars import PRESET_SPEED_CATEGORIES
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
@ -14,6 +15,8 @@ from video_compression_model import VideoCompressionModel
# Constants # Constants
COMPRESSED_VIDEO_FILE = 'compressed_video.avi' COMPRESSED_VIDEO_FILE = 'compressed_video.avi'
MAX_FRAMES = 0 # Limit the number of frames processed MAX_FRAMES = 0 # Limit the number of frames processed
CRF = 51
SPEED = PRESET_SPEED_CATEGORIES.index("ultrafast")
# Load the trained model # Load the trained model
MODEL = tf.keras.models.load_model('models/model.tf', custom_objects={'VideoCompressionModel': VideoCompressionModel}) MODEL = tf.keras.models.load_model('models/model.tf', custom_objects={'VideoCompressionModel': VideoCompressionModel})
@ -37,7 +40,7 @@ def predict_frame(uncompressed_frame):
#display_frame = np.clip(cv2.cvtColor(uncompressed_frame, cv2.COLOR_BGR2RGB) * 255.0, 0, 255).astype(np.uint8) #display_frame = np.clip(cv2.cvtColor(uncompressed_frame, cv2.COLOR_BGR2RGB) * 255.0, 0, 255).astype(np.uint8)
#cv2.imshow("uncomp", uncompressed_frame) #cv2.imshow("uncomp", uncompressed_frame)
frame = preprocess_frame(uncompressed_frame) frame = preprocess_frame(uncompressed_frame, CRF, SPEED)
compressed_frame = MODEL.predict([np.expand_dims(frame, axis=0)])[0] compressed_frame = MODEL.predict([np.expand_dims(frame, axis=0)])[0]
@ -54,7 +57,7 @@ height, width = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PRO
cap.release() cap.release()
fourcc = cv2.VideoWriter_fourcc(*'XVID') fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(COMPRESSED_VIDEO_FILE, fourcc, 24.0, (width, height)) out = cv2.VideoWriter(COMPRESSED_VIDEO_FILE, fourcc, 24.0, (width, height), True)
if not out.isOpened(): if not out.isOpened():
print("Error: VideoWriter could not be opened.") print("Error: VideoWriter could not be opened.")

View file

@ -3,7 +3,7 @@
import cv2 import cv2
import numpy as np import numpy as np
from globalVars import HEIGHT, WIDTH from globalVars import HEIGHT, NUM_PRESET_SPEEDS, WIDTH
def extract_edge_features(frame): def extract_edge_features(frame):
@ -39,17 +39,23 @@ def extract_histogram_features(frame, bins=64):
return np.array(feature_vector) return np.array(feature_vector)
def preprocess_frame(frame): def preprocess_frame(frame, crf, speed):
# Check frame dimensions and resize if necessary # Check frame dimensions and resize if necessary
if frame.shape[:2] != (HEIGHT, WIDTH): if frame.shape[:2] != (HEIGHT, WIDTH):
frame = cv2.resize(frame, (WIDTH, HEIGHT), interpolation=cv2.INTER_NEAREST) frame = cv2.resize(frame, (WIDTH, HEIGHT), interpolation=cv2.INTER_NEAREST)
# Extract features # Scale frame to [0, 1]
edge_feature = extract_edge_features(frame) compressed_frame = frame / 255.0
histogram_feature = extract_histogram_features(frame)
histogram_feature_image = np.full((HEIGHT, WIDTH), histogram_feature.mean()) # Convert histogram feature to image-like shape
combined_feature = np.stack([edge_feature, histogram_feature_image], axis=-1)
compressed_frame = frame / 255.0 # Assuming the frame is uint8, scale to [0, 1] # Scale CRF and SPEED to [0, 1] (assuming they are within known bounds)
return compressed_frame crf_scaled = crf / 51
speed_scaled = speed / NUM_PRESET_SPEEDS
# Create images with the CRF and SPEED values, filling extra channels
crf_image = np.full((HEIGHT, WIDTH, 1), crf_scaled) # Note the added dimension
speed_image = np.full((HEIGHT, WIDTH, 1), speed_scaled) # Note the added dimension
# Combine the frames with the CRF and SPEED images
combined_frame = np.concatenate([compressed_frame, crf_image, speed_image], axis=-1)
return combined_frame

View file

@ -5,7 +5,7 @@ import cv2
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from featureExtraction import preprocess_frame from featureExtraction import preprocess_frame
from globalVars import HEIGHT, LOGGER, NUM_COLOUR_CHANNELS, WIDTH from globalVars import HEIGHT, LOGGER, NUM_COLOUR_CHANNELS, NUM_PRESET_SPEEDS, PRESET_SPEED_CATEGORIES, WIDTH
#from tensorflow.keras.mixed_precision import Policy #from tensorflow.keras.mixed_precision import Policy
@ -22,13 +22,16 @@ def data_generator(videos, batch_size):
video_path = os.path.join(os.path.dirname("test_data/validation/validation.json"), video_details["compressed_video_file"]) video_path = os.path.join(os.path.dirname("test_data/validation/validation.json"), video_details["compressed_video_file"])
uncompressed_video_path = os.path.join(os.path.dirname("test_data/validation/validation.json"), video_details["original_video_file"]) uncompressed_video_path = os.path.join(os.path.dirname("test_data/validation/validation.json"), video_details["original_video_file"])
CRF = video_details["crf"] / 51
SPEED = PRESET_SPEED_CATEGORIES.index(video_details["preset_speed"])
# Open the video files # Open the video files
cap_compressed = cv2.VideoCapture(video_path) cap_compressed = cv2.VideoCapture(video_path)
cap_uncompressed = cv2.VideoCapture(uncompressed_video_path) cap_uncompressed = cv2.VideoCapture(uncompressed_video_path)
# Lists to store the processed frames # Lists to store the processed frames
compressed_frame_batch = [] # Input data (Training) compressed_frame_batch = [] # Input data (Target)
uncompressed_frame_batch = [] # Target data (Target) uncompressed_frame_batch = [] # Target data (Training)
# Read and process frames from both videos # Read and process frames from both videos
while cap_compressed.isOpened() and cap_uncompressed.isOpened(): while cap_compressed.isOpened() and cap_uncompressed.isOpened():
@ -37,11 +40,11 @@ def data_generator(videos, batch_size):
if not ret_compressed or not ret_uncompressed: if not ret_compressed or not ret_uncompressed:
break break
# Preprocess the compressed frame (input) # Preprocess the compressed frame (target)
compressed_frame = preprocess_frame(compressed_frame) compressed_frame = preprocess_frame(compressed_frame, CRF, SPEED)
# Preprocess the uncompressed frame (target) # Preprocess the uncompressed frame (input)
uncompressed_frame = preprocess_frame(uncompressed_frame) # Modify if different preprocessing is needed for target frames uncompressed_frame = preprocess_frame(uncompressed_frame, 0, PRESET_SPEED_CATEGORIES.index("veryslow")) # Modify if different preprocessing is needed for target frames
# Append processed frames to batches # Append processed frames to batches
compressed_frame_batch.append(compressed_frame) compressed_frame_batch.append(compressed_frame)
@ -49,7 +52,7 @@ def data_generator(videos, batch_size):
# If batch is complete, yield it # If batch is complete, yield it
if len(compressed_frame_batch) == batch_size: if len(compressed_frame_batch) == batch_size:
yield (np.array(compressed_frame_batch), np.array(uncompressed_frame_batch)) # Yielding Training and Target data yield (np.array(uncompressed_frame_batch), np.array(compressed_frame_batch)) # Yielding Training and Target data
compressed_frame_batch = [] compressed_frame_batch = []
uncompressed_frame_batch = [] uncompressed_frame_batch = []
@ -59,7 +62,7 @@ def data_generator(videos, batch_size):
# If there are frames left that don't fill a whole batch, send them anyway # If there are frames left that don't fill a whole batch, send them anyway
if len(compressed_frame_batch) > 0: if len(compressed_frame_batch) > 0:
yield (np.array(compressed_frame_batch), np.array(uncompressed_frame_batch)) yield (np.array(uncompressed_frame_batch), np.array(compressed_frame_batch))
class VideoCompressionModel(tf.keras.Model): class VideoCompressionModel(tf.keras.Model):
def __init__(self): def __init__(self):
@ -67,7 +70,7 @@ class VideoCompressionModel(tf.keras.Model):
LOGGER.debug("Initializing VideoCompressionModel.") LOGGER.debug("Initializing VideoCompressionModel.")
# Input shape (includes channels for edges and histogram) # Input shape (includes channels for edges and histogram)
input_shape_with_histogram = (HEIGHT, WIDTH, NUM_COLOUR_CHANNELS) input_shape_with_histogram = (HEIGHT, WIDTH, NUM_COLOUR_CHANNELS + 2)
# Encoder part of the model # Encoder part of the model
self.encoder = tf.keras.Sequential([ self.encoder = tf.keras.Sequential([