Working GPU model
This commit is contained in:
parent
5085c87300
commit
dea59068fb
3 changed files with 190 additions and 108 deletions
170
train_model.py
170
train_model.py
|
@ -2,106 +2,168 @@ import os
|
|||
import json
|
||||
import numpy as np
|
||||
import cv2
|
||||
import argparse
|
||||
import tensorflow as tf
|
||||
from video_compression_model import NUM_CHANNELS, VideoCompressionModel, PRESET_SPEED_CATEGORIES
|
||||
from tensorflow.keras.callbacks import EarlyStopping
|
||||
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
||||
|
||||
print(tf.config.list_physical_devices('GPU'))
|
||||
print("GPUs Detected:", tf.config.list_physical_devices('GPU'))
|
||||
|
||||
# Constants
|
||||
BATCH_SIZE = 8
|
||||
EPOCHS = 50
|
||||
TRAIN_SAMPLES = 5
|
||||
BATCH_SIZE = 16
|
||||
EPOCHS = 40
|
||||
LEARNING_RATE = 0.00001
|
||||
TRAIN_SAMPLES = 100
|
||||
MODEL_SAVE_FILE = "models/model.tf"
|
||||
MODEL_CHECKPOINT_DIR = "checkpoints"
|
||||
CONTINUE_TRAINING = None
|
||||
|
||||
def load_list(list_path):
|
||||
with open(list_path, "r") as json_file:
|
||||
video_details_list = json.load(json_file)
|
||||
return video_details_list
|
||||
|
||||
def load_frame_from_video(video_file):
|
||||
print("Extracting video frame...")
|
||||
cap = cv2.VideoCapture(video_file)
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
return None
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
cap.release()
|
||||
return frame
|
||||
|
||||
def preprocess(frame):
|
||||
return frame / 255.0
|
||||
|
||||
def save_model(model, file):
|
||||
os.makedirs("models", exist_ok=True)
|
||||
model.save(os.path.join("models/", file))
|
||||
print("Model saved successfully!")
|
||||
|
||||
def load_video_from_list(list_path):
|
||||
details_list = load_list(list_path)
|
||||
all_frames = []
|
||||
all_details = []
|
||||
|
||||
num_videos = len(details_list)
|
||||
frames_per_video = int(TRAIN_SAMPLES / num_videos)
|
||||
|
||||
print(f"Loading {frames_per_video} across {num_videos} videos")
|
||||
|
||||
for video_details in details_list:
|
||||
VIDEO_FILE = video_details["video_file"]
|
||||
UNCOMPRESSED_VIDEO_FILE = video_details["uncompressed_video_file"]
|
||||
CRF = video_details['crf'] / 63.0
|
||||
PRESET_SPEED = PRESET_SPEED_CATEGORIES.index(video_details['preset_speed'])
|
||||
video_details['preset_speed'] = PRESET_SPEED
|
||||
|
||||
frame = load_frame_from_video(os.path.join("test_data/", VIDEO_FILE))
|
||||
|
||||
if frame is not None:
|
||||
all_frames.append(preprocess(frame))
|
||||
frames = []
|
||||
frames_compressed = []
|
||||
|
||||
cap = cv2.VideoCapture(os.path.join("test_data/", VIDEO_FILE))
|
||||
cap_uncompressed = cv2.VideoCapture(os.path.join("test_data/", UNCOMPRESSED_VIDEO_FILE))
|
||||
|
||||
for _ in range(frames_per_video):
|
||||
ret, frame_compressed = cap.read()
|
||||
ret_uncompressed, frame = cap_uncompressed.read()
|
||||
|
||||
if not ret or not ret_uncompressed:
|
||||
continue
|
||||
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
frame_compressed = cv2.cvtColor(frame_compressed, cv2.COLOR_BGR2RGB)
|
||||
|
||||
frames.append(preprocess(frame))
|
||||
frames_compressed.append(preprocess(frame_compressed))
|
||||
|
||||
for uncompressed_frame, compressed_frame in zip(frames, frames_compressed):
|
||||
all_details.append({
|
||||
"frame": frame,
|
||||
"frame": uncompressed_frame,
|
||||
"compressed_frame": compressed_frame,
|
||||
"crf": CRF,
|
||||
"preset_speed": PRESET_SPEED,
|
||||
"video_file": VIDEO_FILE
|
||||
})
|
||||
|
||||
cap.release()
|
||||
cap_uncompressed.release()
|
||||
|
||||
return all_details
|
||||
|
||||
def preprocess(frame):
|
||||
return frame / 255.0
|
||||
|
||||
def save_model(model):
|
||||
os.makedirs("models", exist_ok=True)
|
||||
model.save(MODEL_SAVE_FILE, save_format='tf')
|
||||
print("Model saved successfully!")
|
||||
|
||||
def main():
|
||||
global BATCH_SIZE, EPOCHS, TRAIN_SAMPLES, LEARNING_RATE, CONTINUE_TRAINING
|
||||
|
||||
# Argument parsing
|
||||
parser = argparse.ArgumentParser(description="Train the video compression model.")
|
||||
parser.add_argument('-b', '--batch_size', type=int, default=BATCH_SIZE, help='Batch size for training.')
|
||||
parser.add_argument('-e', '--epochs', type=int, default=EPOCHS, help='Number of epochs for training.')
|
||||
parser.add_argument('-s', '--training_samples', type=int, default=TRAIN_SAMPLES, help='Number of training samples.')
|
||||
parser.add_argument('-l', '--learning_rate', type=float, default=LEARNING_RATE, help='Learning rate for training.')
|
||||
parser.add_argument('-c', '--continue_training', type=str, nargs='?', const=MODEL_SAVE_FILE, default=None, help='Path to the saved model to continue training. If used without a value, defaults to the MODEL_SAVE_FILE.')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Use the parsed arguments in your script
|
||||
BATCH_SIZE = args.batch_size
|
||||
EPOCHS = args.epochs
|
||||
TRAIN_SAMPLES = args.training_samples
|
||||
LEARNING_RATE = args.learning_rate
|
||||
CONTINUE_TRAINING = args.continue_training
|
||||
|
||||
print("Training configuration:")
|
||||
print(f"Batch size: {BATCH_SIZE}")
|
||||
print(f"Epochs: {EPOCHS}")
|
||||
print(f"Training samples: {TRAIN_SAMPLES}")
|
||||
print(f"Learning rate: {LEARNING_RATE}")
|
||||
print(f"Continue training from: {CONTINUE_TRAINING}")
|
||||
|
||||
all_video_details_train = load_video_from_list("test_data/training.json")
|
||||
all_video_details_val = load_video_from_list("test_data/validation.json")
|
||||
|
||||
model = VideoCompressionModel(NUM_CHANNELS)
|
||||
model.compile(loss='mean_squared_error', optimizer='adam')
|
||||
early_stop = EarlyStopping(monitor='val_loss', patience=3, verbose=1, restore_best_weights=True)
|
||||
|
||||
# Prepare data
|
||||
all_train_frames = []
|
||||
all_val_frames = []
|
||||
all_crf_train = []
|
||||
all_crf_val = []
|
||||
all_preset_speed_train = []
|
||||
all_preset_speed_val = []
|
||||
|
||||
for video_details_train, video_details_val in zip(all_video_details_train, all_video_details_val):
|
||||
all_train_frames.append(video_details_train["frame"])
|
||||
all_val_frames.append(video_details_val["frame"])
|
||||
all_crf_train.append(video_details_train['crf'])
|
||||
all_crf_val.append(video_details_val['crf'])
|
||||
all_preset_speed_train.append(video_details_train['preset_speed'])
|
||||
all_preset_speed_val.append(video_details_val['preset_speed'])
|
||||
all_train_frames = [video_details["frame"] for video_details in all_video_details_train]
|
||||
all_train_compressed_frames = [video_details["compressed_frame"] for video_details in all_video_details_train]
|
||||
all_val_frames = [video_details["frame"] for video_details in all_video_details_val]
|
||||
all_val_compressed_frames = [video_details["compressed_frame"] for video_details in all_video_details_val]
|
||||
all_crf_train = [video_details['crf'] for video_details in all_video_details_train]
|
||||
all_crf_val = [video_details['crf'] for video_details in all_video_details_val]
|
||||
all_preset_speed_train = [video_details['preset_speed'] for video_details in all_video_details_train]
|
||||
all_preset_speed_val = [video_details['preset_speed'] for video_details in all_video_details_val]
|
||||
|
||||
# Convert lists to numpy arrays
|
||||
all_train_frames = np.array(all_train_frames)
|
||||
all_train_compressed_frames = np.array(all_train_compressed_frames)
|
||||
all_val_frames = np.array(all_val_frames)
|
||||
all_val_compressed_frames = np.array(all_val_compressed_frames)
|
||||
all_crf_train = np.array(all_crf_train)
|
||||
all_crf_val = np.array(all_crf_val)
|
||||
all_preset_speed_train = np.array(all_preset_speed_train)
|
||||
all_preset_speed_val = np.array(all_preset_speed_val)
|
||||
|
||||
if CONTINUE_TRAINING:
|
||||
print("loading model:", CONTINUE_TRAINING)
|
||||
model = tf.keras.models.load_model(CONTINUE_TRAINING) # Load from the specified file
|
||||
else:
|
||||
model = VideoCompressionModel()
|
||||
|
||||
# Define the optimizer with a specific learning rate
|
||||
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
|
||||
|
||||
os.makedirs(MODEL_CHECKPOINT_DIR, exist_ok=True)
|
||||
checkpoint_callback = ModelCheckpoint(
|
||||
filepath=os.path.join(MODEL_CHECKPOINT_DIR, "epoch-{epoch:02d}.tf"),
|
||||
save_weights_only=False,
|
||||
save_best_only=False,
|
||||
verbose=1,
|
||||
save_format="tf"
|
||||
)
|
||||
|
||||
print("\nTraining the model on frame pairs...")
|
||||
#tf.config.run_functions_eagerly(True)
|
||||
|
||||
model.compile(loss='mean_squared_error', optimizer=optimizer)
|
||||
early_stop = EarlyStopping(monitor='val_loss', patience=5, verbose=1, restore_best_weights=True)
|
||||
|
||||
print("\nTraining the model...")
|
||||
model.fit(
|
||||
{"frame": all_train_frames, "crf": all_crf_train, "preset_speed": all_preset_speed_train},
|
||||
all_val_frames, # Target is the compressed frame
|
||||
{"uncompressed_frame": all_train_frames, "compressed_frame": all_train_compressed_frames, "crf": all_crf_train, "preset_speed": all_preset_speed_train},
|
||||
all_train_compressed_frames, # Target is the compressed frame
|
||||
batch_size=BATCH_SIZE,
|
||||
epochs=EPOCHS,
|
||||
validation_data=({"frame": all_val_frames, "crf": all_crf_val, "preset_speed": all_preset_speed_val}, all_val_frames),
|
||||
callbacks=[early_stop]
|
||||
validation_data=({"uncompressed_frame": all_val_frames, "compressed_frame": all_val_compressed_frames, "crf": all_crf_val, "preset_speed": all_preset_speed_val}, all_val_compressed_frames),
|
||||
callbacks=[early_stop, checkpoint_callback]
|
||||
)
|
||||
print("\nTraining completed!")
|
||||
|
||||
save_model(model, 'model.keras')
|
||||
save_model(model)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
Reference in a new issue