This commit is contained in:
Jordon Brooks 2023-08-23 00:54:06 +01:00
parent f4512bba99
commit db43239b3d
5 changed files with 311 additions and 197 deletions

View file

@ -9,51 +9,21 @@ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
import tensorflow as tf
from tensorflow.keras import backend as K
from globalVars import HEIGHT, NUM_PRESET_SPEEDS, WIDTH
from globalVars import HEIGHT, LOGGER, NUM_PRESET_SPEEDS, WIDTH
def scale_crf(crf):
return crf / 51
def scale_speed_preset(speed):
return speed / NUM_PRESET_SPEEDS
def extract_edge_features(frame):
"""
Extract edge features using Canny edge detection.
Args:
- frame (ndarray): Image frame.
Returns:
- ndarray: Edge feature map.
"""
edges = cv2.Canny(frame, threshold1=100, threshold2=200)
return edges.astype(np.float32) / 255.0
def extract_histogram_features(frame, bins=64):
"""
Extract histogram features from a frame with 3 channels.
Args:
- frame (ndarray): Image frame with shape (height, width, 3).
- bins (int): Number of bins for the histogram.
Returns:
- ndarray: Normalized histogram feature vector.
"""
feature_vector = []
for channel in range(3):
histogram, _ = np.histogram(frame[:,:,channel].flatten(), bins=bins, range=[0, 255])
normalized_histogram = histogram.astype(np.float32) / frame[:,:,channel].size
feature_vector.extend(normalized_histogram)
return np.array(feature_vector)
def psnr(y_true, y_pred):
#LOGGER.info(f"[psnr function] y_true: {y_true.shape}, y_pred: {y_pred.shape}")
max_pixel = 1.0
return 10.0 * K.log((max_pixel ** 2) / (K.mean(K.square(y_pred - y_true)))) / K.log(10.0)
mse = K.mean(K.square(y_pred - y_true))
return 20.0 * K.log(max_pixel / K.sqrt(mse)) / K.log(10.0)
def ssim(y_true, y_pred):
@ -64,14 +34,41 @@ def combined(y_true, y_pred):
return (psnr(y_true, y_pred) + ssim(y_true, y_pred)) / 2
def preprocess_frame(frame, resize=True):
#Preprocesses a single frame, cropping it if needed
def combined_loss(y_true, y_pred):
return -combined(y_true, y_pred) # The goal is to maximize the combined value
def detect_noise(image, threshold=15):
# Convert to grayscale if it's a color image
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Compute the standard deviation
std_dev = np.std(image)
# If the standard deviation is higher than a threshold, it might be considered noisy
return std_dev > threshold
def frame_difference(frame1, frame2):
# Ensure both frames are of the same size and type
if frame1.shape != frame2.shape:
raise ValueError("Frames must have the same dimensions and number of channels")
# Calculate the absolute difference between the frames
difference = cv2.absdiff(frame1, frame2)
return difference
def preprocess_frame(frame, resize=True, scale=True):
# Check frame dimensions and resize if necessary
if resize and frame.shape[:2] != (HEIGHT, WIDTH):
frame = cv2.resize(frame, (WIDTH, HEIGHT), interpolation=cv2.INTER_LINEAR)
if scale:
# Scale frame to [0, 1]
compressed_frame = frame / 255.0
frame = frame / 255.0
return compressed_frame
return frame