sequenced based

This commit is contained in:
Jordon Brooks 2023-07-24 23:56:46 +01:00
parent 80c5f2216d
commit d0f0b21cb5
3 changed files with 150 additions and 61 deletions

View file

@ -1,7 +1,7 @@
import tensorflow as tf import tensorflow as tf
import numpy as np import numpy as np
import cv2 import cv2
from video_compression_model import VideoCompressionModel from video_compression_model import NUM_FRAMES, PRESET_SPEED_CATEGORIES, VideoCompressionModel
# Constants # Constants
NUM_CHANNELS = 3 NUM_CHANNELS = 3
@ -10,7 +10,7 @@ NUM_CHANNELS = 3
model = tf.keras.models.load_model('models/model.keras', custom_objects={'VideoCompressionModel': VideoCompressionModel}) model = tf.keras.models.load_model('models/model.keras', custom_objects={'VideoCompressionModel': VideoCompressionModel})
# Step 3: Load the uncompressed video # Step 3: Load the uncompressed video
UNCOMPRESSED_VIDEO_FILE = 'test_data/test_video.mkv' UNCOMPRESSED_VIDEO_FILE = 'test_data/training_video.mkv'
def load_frames_from_video(video_file, num_frames = 0): def load_frames_from_video(video_file, num_frames = 0):
print("Extracting video frames...") print("Extracting video frames...")
@ -32,19 +32,40 @@ def load_frames_from_video(video_file, num_frames = 0):
print("Extraction Complete") print("Extraction Complete")
return frames return frames
uncompressed_frames = load_frames_from_video(UNCOMPRESSED_VIDEO_FILE, 200) uncompressed_frames = load_frames_from_video(UNCOMPRESSED_VIDEO_FILE, 100)
if len(uncompressed_frames) == 0 or None: if not uncompressed_frames:
print("IO ERROR!") print("IO ERROR!")
exit() exit()
uncompressed_frames = np.array(uncompressed_frames) / 255.0 uncompressed_frames = np.array(uncompressed_frames) / 255.0
if len(uncompressed_frames) == 0 or None: # Generate sequences of frames for prediction
print("np.array ERROR!") uncompressed_frame_sequences = []
exit() for i in range(len(uncompressed_frames) - NUM_FRAMES + 1):
sequence = uncompressed_frames[i:i+NUM_FRAMES]
uncompressed_frame_sequences.append(sequence)
uncompressed_frame_sequences = np.array(uncompressed_frame_sequences)
#for frame in uncompressed_frames:
# cv2.imshow('Frame', frame)
# cv2.waitKey(50) # Display each frame for 1 second
# Step 4: Compress the video frames using the loaded model # Step 4: Compress the video frames using the loaded model
compressed_frames = model.predict(uncompressed_frames) crf_values = np.full((len(uncompressed_frame_sequences), 1), 25, dtype=np.float32) # Added dtype argument
preset_speed_index = PRESET_SPEED_CATEGORIES.index("fast")
preset_speed_values = np.full((len(uncompressed_frame_sequences), 1), preset_speed_index, dtype=np.float32) # Added dtype argument
compressed_frame_sequences = model.predict({"frames": uncompressed_frame_sequences, "crf": crf_values, "preset_speed": preset_speed_values})
# We'll use the last frame of each sequence as the compressed frame
#compressed_frames = compressed_frame_sequences[:, -1]
#for frame in compressed_frame_sequences:
# cv2.imshow('Compressed Frame', frame)
# cv2.waitKey(50)
# Step 5: Save the compressed video frames # Step 5: Save the compressed video frames
COMPRESSED_VIDEO_FILE = 'compressed_video.mkv' COMPRESSED_VIDEO_FILE = 'compressed_video.mkv'
@ -60,5 +81,5 @@ def save_frames_as_video(frames, video_file):
out.write(frame) out.write(frame)
out.release() out.release()
save_frames_as_video(compressed_frames, COMPRESSED_VIDEO_FILE) save_frames_as_video(compressed_frame_sequences, COMPRESSED_VIDEO_FILE)
print("Compression completed.") print("Compression completed.")

View file

@ -1,81 +1,123 @@
import os import os
import json
import tensorflow as tf import tensorflow as tf
import numpy as np import numpy as np
import cv2 import cv2
from video_compression_model import VideoCompressionModel from video_compression_model import NUM_FRAMES, VideoCompressionModel, PRESET_SPEED_CATEGORIES
# Constants # Constants
NUM_CHANNELS = 3 # Number of color channels in the video frames (RGB images have 3 channels) NUM_CHANNELS = 3 # Number of color channels in the video frames (RGB images have 3 channels)
BATCH_SIZE = 32 # Batch size used during training BATCH_SIZE = 16 # Batch size used during training
EPOCHS = 20 # Number of training epochs EPOCHS = 1 # Number of training epochs
TRAIN_SAMPLES = 1 # number of frames to extract
# Step 1: Data Preparation # Step 1: Data Preparation
TRAIN_VIDEO_FILE = 'test_data/native_video.mkv' # The training video file name
VAL_VIDEO_FILE = 'test_data/training_video.mkv' # The validation video file name
TRAIN_SAMPLES = 2 # Number of video frames used for training
VAL_SAMPLES = 2 # Number of video frames used for validation
def load_list(list_path):
with open(list_path, "r") as json_file:
video_details_list = json.load(json_file)
return video_details_list
# Update load_frames_from_video function to resize frames
def load_frames_from_video(video_file, num_frames): def load_frames_from_video(video_file, num_frames):
print("Extracting video frames...") print("Extracting video frames...")
cap = cv2.VideoCapture(video_file) cap = cv2.VideoCapture(video_file)
frames = [] frames = []
count = 0 count = 0
frame_width, frame_height = None, None # Initialize the frame dimensions
while True: while True:
ret, frame = cap.read() ret, frame = cap.read()
if not ret: if not ret:
break break
if frame_width is None or frame_height is None:
frame_height, frame_width = frame.shape[:2] # Get the frame dimensions from the first frame
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
#frame = cv2.resize(frame, (target_width, target_height))
frames.append(frame) frames.append(frame)
count += 1 count += 1
if count >= num_frames: if count >= num_frames:
break break
cap.release() cap.release()
return frames, frame_width, frame_height # Return frames and frame dimensions width, height = frame.shape[:2]
return frames, width, height
train_frames, FRAME_WIDTH, FRAME_HEIGHT = load_frames_from_video(TRAIN_VIDEO_FILE, num_frames=TRAIN_SAMPLES)
val_frames, _, _ = load_frames_from_video(VAL_VIDEO_FILE, num_frames=VAL_SAMPLES)
print("Number of training frames:", len(train_frames))
print("Number of validation frames:", len(val_frames))
def preprocess(frames): def preprocess(frames):
frames = np.array(frames) / 255.0 return np.array(frames) / 255.0
return frames
train_frames = preprocess(train_frames) def save_model(model, file):
val_frames = preprocess(val_frames) os.makedirs("models", exist_ok=True)
model.save(os.path.join("models/", file))
print("Model saved successfully!")
print("training frames:", len(train_frames)) # Update load_video_from_list function to provide target_width and target_height
print("validation frames:", len(val_frames)) def load_video_from_list(list_path):
details_list = load_list(list_path)
all_frames = []
all_details = []
for video_details in details_list:
VIDEO_FILE = video_details["video_file"]
CRF = video_details['crf'] / 63.0
PRESET_SPEED = PRESET_SPEED_CATEGORIES.index(video_details['preset_speed'])
video_details['preset_speed'] = PRESET_SPEED
# Step 2: Model Architecture # Update load_frames_from_video calls with target_width and target_height
model = VideoCompressionModel() #train_frames, w, h = load_frames_from_video(os.path.join("test_data/", VIDEO_FILE), TRAIN_SAMPLES, target_width, target_height)
train_frames, w, h = load_frames_from_video(os.path.join("test_data/", VIDEO_FILE), NUM_FRAMES * TRAIN_SAMPLES)
all_frames.extend(train_frames)
all_details.append({
"frames": train_frames,
"width": w,
"height": h,
"crf": CRF,
"preset_speed": PRESET_SPEED,
"video_file": VIDEO_FILE
})
return all_details
model.compile(loss='mean_squared_error', optimizer='adam', run_eagerly=True) def generate_frame_sequences(frames):
# Generate sequences of frames for the model
sequences = []
labels = []
for i in range(len(frames) - NUM_FRAMES + 1):
sequence = frames[i:i+NUM_FRAMES]
sequences.append(sequence)
# Use the last frame of the sequence as the label
labels.append(sequence[-1])
return np.array(sequences), np.array(labels)
# Adjusting the input shape for training and validation
frame_height, frame_width = train_frames[0].shape[:2]
# Use the resized frames as target data def main():
train_targets = train_frames #target_width = 640 # Choose a fixed width for the frames
val_targets = val_frames #target_height = 360 # Choose a fixed height for the frames
# Create the "models" directory if it doesn't exist all_video_details = load_video_from_list("test_data/training.json")
os.makedirs("models", exist_ok=True)
print("\nTraining the model...") model = VideoCompressionModel(NUM_CHANNELS, NUM_FRAMES)
model.fit( model.compile(loss='mean_squared_error', optimizer='adam')
train_frames, [train_targets, tf.zeros_like(train_targets)],
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_data=(val_frames, [val_targets, tf.zeros_like(val_targets)])
)
print("\nTraining completed.")
# Step 3: Save the trained model for video_details in all_video_details:
model.save('models/model.keras') train_frames = video_details["frames"]
print("Model saved successfully!") val_frames = train_frames.copy() # For simplicity, using the same frames for validation
train_frames = preprocess(train_frames)
val_frames = preprocess(val_frames)
train_sequences, train_labels = generate_frame_sequences(train_frames)
val_sequences, val_labels = generate_frame_sequences(val_frames)
num_sequences = len(train_sequences)
crf_array = np.full((num_sequences, 1), video_details['crf'])
preset_speed_array = np.full((num_sequences, 1), video_details['preset_speed'])
print("\nTraining the model for video:", video_details["video_file"])
model.fit(
{"frames": train_sequences, "crf": crf_array, "preset_speed": preset_speed_array},
train_labels, # Use train_labels as the ground truth
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_data=({"frames": val_sequences, "crf": crf_array, "preset_speed": preset_speed_array},
val_labels) # Use val_labels as the ground truth for validation
)
print("\nTraining completed for video:", video_details["video_file"])
save_model(model, 'model.keras')
if __name__ == "__main__":
main()

View file

@ -1,27 +1,53 @@
import tensorflow as tf import tensorflow as tf
PRESET_SPEED_CATEGORIES = ["ultrafast", "superfast", "veryfast", "faster", "fast", "medium", "slow", "slower", "veryslow"]
NUM_PRESET_SPEEDS = len(PRESET_SPEED_CATEGORIES)
NUM_FRAMES = 5 # Number of consecutive frames in a sequence
class VideoCompressionModel(tf.keras.Model): class VideoCompressionModel(tf.keras.Model):
def __init__(self, NUM_CHANNELS=3): def __init__(self, NUM_CHANNELS=3, NUM_FRAMES=5):
super(VideoCompressionModel, self).__init__() super(VideoCompressionModel, self).__init__()
self.NUM_CHANNELS = NUM_CHANNELS
self.NUM_FRAMES = NUM_FRAMES
# Embedding layer for preset_speed
self.preset_embedding = tf.keras.layers.Embedding(NUM_PRESET_SPEEDS, 16)
# Encoder layers # Encoder layers
self.encoder = tf.keras.Sequential([ self.encoder = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(None, None, NUM_CHANNELS)), tf.keras.layers.Conv3D(32, (3, 3, 3), activation='relu', padding='same', input_shape=(None, None, None, NUM_CHANNELS + 1 + 16)), # Notice the adjusted channel number
tf.keras.layers.MaxPooling3D((2, 2, 2)),
# Add more encoder layers as needed # Add more encoder layers as needed
]) ])
# Decoder layers # Decoder layers
self.decoder = tf.keras.Sequential([ self.decoder = tf.keras.Sequential([
tf.keras.layers.Conv2DTranspose(32, (3, 3), activation='relu', padding='same'), tf.keras.layers.Conv3DTranspose(32, (3, 3, 3), activation='relu', padding='same'),
tf.keras.layers.UpSampling3D((2, 2, 2)),
# Add more decoder layers as needed # Add more decoder layers as needed
tf.keras.layers.Conv2D(NUM_CHANNELS, (3, 3), activation='sigmoid', padding='same') # Output layer for video frames tf.keras.layers.Conv3D(NUM_CHANNELS, (3, 3, 3), activation='sigmoid', padding='same') # Output layer for video frames
]) ])
def call(self, inputs): def call(self, inputs):
frames = inputs["frames"]
crf = tf.expand_dims(inputs["crf"], -1)
preset_speed = inputs["preset_speed"]
# Convert preset_speed to embeddings
preset_embedding = self.preset_embedding(preset_speed)
preset_embedding = tf.keras.layers.Flatten()(preset_embedding)
# Concatenate crf and preset_embedding to frames
frames_shape = tf.shape(frames)
repeated_crf = tf.tile(tf.reshape(crf, (-1, 1, 1, 1, 1)), [1, frames_shape[1], frames_shape[2], frames_shape[3], 1])
repeated_preset = tf.tile(tf.reshape(preset_embedding, (-1, 1, 1, 1, 16)), [1, frames_shape[1], frames_shape[2], frames_shape[3], 1])
frames = tf.concat([frames, repeated_crf, repeated_preset], axis=-1)
# Encoding the video frames # Encoding the video frames
compressed_representation = self.encoder(inputs) compressed_representation = self.encoder(frames)
# Decoding to generate compressed video frames # Decoding to generate compressed video frames
reconstructed_frames = self.decoder(compressed_representation) reconstructed_frames = self.decoder(compressed_representation)
return reconstructed_frames[:,-1,:,:,:]
return reconstructed_frames