sequenced based

This commit is contained in:
Jordon Brooks 2023-07-24 23:56:46 +01:00
parent 80c5f2216d
commit d0f0b21cb5
3 changed files with 150 additions and 61 deletions

View file

@ -1,27 +1,53 @@
import tensorflow as tf
PRESET_SPEED_CATEGORIES = ["ultrafast", "superfast", "veryfast", "faster", "fast", "medium", "slow", "slower", "veryslow"]
NUM_PRESET_SPEEDS = len(PRESET_SPEED_CATEGORIES)
NUM_FRAMES = 5 # Number of consecutive frames in a sequence
class VideoCompressionModel(tf.keras.Model):
def __init__(self, NUM_CHANNELS=3):
def __init__(self, NUM_CHANNELS=3, NUM_FRAMES=5):
super(VideoCompressionModel, self).__init__()
self.NUM_CHANNELS = NUM_CHANNELS
self.NUM_FRAMES = NUM_FRAMES
# Embedding layer for preset_speed
self.preset_embedding = tf.keras.layers.Embedding(NUM_PRESET_SPEEDS, 16)
# Encoder layers
self.encoder = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(None, None, NUM_CHANNELS)),
tf.keras.layers.Conv3D(32, (3, 3, 3), activation='relu', padding='same', input_shape=(None, None, None, NUM_CHANNELS + 1 + 16)), # Notice the adjusted channel number
tf.keras.layers.MaxPooling3D((2, 2, 2)),
# Add more encoder layers as needed
])
# Decoder layers
self.decoder = tf.keras.Sequential([
tf.keras.layers.Conv2DTranspose(32, (3, 3), activation='relu', padding='same'),
tf.keras.layers.Conv3DTranspose(32, (3, 3, 3), activation='relu', padding='same'),
tf.keras.layers.UpSampling3D((2, 2, 2)),
# Add more decoder layers as needed
tf.keras.layers.Conv2D(NUM_CHANNELS, (3, 3), activation='sigmoid', padding='same') # Output layer for video frames
tf.keras.layers.Conv3D(NUM_CHANNELS, (3, 3, 3), activation='sigmoid', padding='same') # Output layer for video frames
])
def call(self, inputs):
frames = inputs["frames"]
crf = tf.expand_dims(inputs["crf"], -1)
preset_speed = inputs["preset_speed"]
# Convert preset_speed to embeddings
preset_embedding = self.preset_embedding(preset_speed)
preset_embedding = tf.keras.layers.Flatten()(preset_embedding)
# Concatenate crf and preset_embedding to frames
frames_shape = tf.shape(frames)
repeated_crf = tf.tile(tf.reshape(crf, (-1, 1, 1, 1, 1)), [1, frames_shape[1], frames_shape[2], frames_shape[3], 1])
repeated_preset = tf.tile(tf.reshape(preset_embedding, (-1, 1, 1, 1, 16)), [1, frames_shape[1], frames_shape[2], frames_shape[3], 1])
frames = tf.concat([frames, repeated_crf, repeated_preset], axis=-1)
# Encoding the video frames
compressed_representation = self.encoder(inputs)
compressed_representation = self.encoder(frames)
# Decoding to generate compressed video frames
reconstructed_frames = self.decoder(compressed_representation)
return reconstructed_frames
return reconstructed_frames[:,-1,:,:,:]