Initial Commit

This commit is contained in:
Jordon Brooks 2023-07-24 16:47:07 +01:00
parent 645b6c29f7
commit c7306a9d48
4 changed files with 191 additions and 159 deletions

168
.gitignore vendored
View file

@ -1,162 +1,12 @@
# ---> Python
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
*
!*/
# C extensions
*.so
!.github/**
!LICENSE
!README.md
!.gitignore
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
!DeepEncode.py
!train_model.py
!video_compression_model.py

64
DeepEncode.py Normal file
View file

@ -0,0 +1,64 @@
import tensorflow as tf
import numpy as np
import cv2
from video_compression_model import VideoCompressionModel
# Constants
NUM_CHANNELS = 3
# Step 2: Load the trained model
model = tf.keras.models.load_model('ai_rate_control_model.keras', custom_objects={'VideoCompressionModel': VideoCompressionModel})
# Step 3: Load the uncompressed video
UNCOMPRESSED_VIDEO_FILE = 'test_video.mkv'
def load_frames_from_video(video_file, num_frames = 0):
print("Extracting video frames...")
cap = cv2.VideoCapture(video_file)
frames = []
count = 0
while True:
ret, frame = cap.read()
if not ret:
print("Max frames from file reached")
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
count += 1
if num_frames == 0 or count >= num_frames:
print("Max Frames wanted reached: ", num_frames)
break
cap.release()
print("Extraction Complete")
return frames
uncompressed_frames = load_frames_from_video(UNCOMPRESSED_VIDEO_FILE, 200)
if len(uncompressed_frames) == 0 or None:
print("IO ERROR!")
exit()
uncompressed_frames = np.array(uncompressed_frames) / 255.0
if len(uncompressed_frames) == 0 or None:
print("np.array ERROR!")
exit()
# Step 4: Compress the video frames using the loaded model
compressed_frames = model.predict(uncompressed_frames)
# Step 5: Save the compressed video frames
COMPRESSED_VIDEO_FILE = 'compressed_video.mkv'
def save_frames_as_video(frames, video_file):
print("Saving video frames...")
height, width = frames[0].shape[:2]
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(video_file, fourcc, 24.0, (width, height))
for frame in frames:
frame = np.clip(frame * 255.0, 0, 255).astype(np.uint8)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame)
out.release()
save_frames_as_video(compressed_frames, COMPRESSED_VIDEO_FILE)
print("Compression completed.")

91
train_model.py Normal file
View file

@ -0,0 +1,91 @@
import os
import tensorflow as tf
import numpy as np
import cv2
from video_compression_model import VideoCompressionModel
# Constants
NUM_CHANNELS = 3 # Number of color channels in the video frames (RGB images have 3 channels)
BATCH_SIZE = 32 # Batch size used during training
EPOCHS = 20 # Number of training epochs
CHECKPOINT_FILEPATH = "models/checkpoint-{epoch:02d}.keras"
# Step 1: Data Preparation
TRAIN_VIDEO_FILE = 'native_video.mkv' # The training video file name
VAL_VIDEO_FILE = 'training_video.mkv' # The validation video file name
TRAIN_SAMPLES = 2 # Number of video frames used for training
VAL_SAMPLES = 2 # Number of video frames used for validation
def load_frames_from_video(video_file, num_frames):
print("Extracting video frames...")
cap = cv2.VideoCapture(video_file)
frames = []
count = 0
frame_width, frame_height = None, None # Initialize the frame dimensions
while True:
ret, frame = cap.read()
if not ret:
break
if frame_width is None or frame_height is None:
frame_height, frame_width = frame.shape[:2] # Get the frame dimensions from the first frame
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
count += 1
if count >= num_frames:
break
cap.release()
return frames, frame_width, frame_height # Return frames and frame dimensions
train_frames, FRAME_WIDTH, FRAME_HEIGHT = load_frames_from_video(TRAIN_VIDEO_FILE, num_frames=TRAIN_SAMPLES)
val_frames, _, _ = load_frames_from_video(VAL_VIDEO_FILE, num_frames=VAL_SAMPLES)
print("Number of training frames:", len(train_frames))
print("Number of validation frames:", len(val_frames))
def preprocess(frames):
frames = np.array(frames) / 255.0
return frames
train_frames = preprocess(train_frames)
val_frames = preprocess(val_frames)
print("training frames:", len(train_frames))
print("validation frames:", len(val_frames))
# Step 2: Model Architecture
model = VideoCompressionModel()
model.compile(loss='mean_squared_error', optimizer='adam', run_eagerly=True)
# Adjusting the input shape for training and validation
frame_height, frame_width = train_frames[0].shape[:2]
# Use the resized frames as target data
train_targets = train_frames
val_targets = val_frames
# Create the "models" directory if it doesn't exist
os.makedirs("models", exist_ok=True)
# Create the ModelCheckpoint callback
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=CHECKPOINT_FILEPATH,
save_weights_only=False, # Save the entire model (including architecture)
monitor='val_loss', # Metric to monitor for saving the best model (optional)
save_best_only=True # Save only the best model based on the monitored metric (optional)
)
print("\nTraining the model...")
model.fit(
train_frames, [train_targets, tf.zeros_like(train_targets)],
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_data=(val_frames, [val_targets, tf.zeros_like(val_targets)]),
callbacks=[model_checkpoint_callback] # Add the ModelCheckpoint callback
)
print("\nTraining completed.")
# Step 3: Save the trained model
model.save('ai_rate_control_model.keras')
print("Model saved successfully!")

View file

@ -0,0 +1,27 @@
import tensorflow as tf
class VideoCompressionModel(tf.keras.Model):
def __init__(self, NUM_CHANNELS=3):
super(VideoCompressionModel, self).__init__()
# Encoder layers
self.encoder = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(None, None, NUM_CHANNELS)),
# Add more encoder layers as needed
])
# Decoder layers
self.decoder = tf.keras.Sequential([
tf.keras.layers.Conv2DTranspose(32, (3, 3), activation='relu', padding='same'),
# Add more decoder layers as needed
tf.keras.layers.Conv2D(NUM_CHANNELS, (3, 3), activation='sigmoid', padding='same') # Output layer for video frames
])
def call(self, inputs):
# Encoding the video frames
compressed_representation = self.encoder(inputs)
# Decoding to generate compressed video frames
reconstructed_frames = self.decoder(compressed_representation)
return reconstructed_frames