Histogram now works with all 3 colours

This commit is contained in:
Jordon Brooks 2023-08-13 15:58:15 +01:00
parent 2e47ff349f
commit c157549fe4

View file

@ -21,17 +21,23 @@ def extract_edge_features(frame):
def extract_histogram_features(frame, bins=64):
"""
Extract histogram features from a frame.
Extract histogram features from a frame with 3 channels.
Args:
- frame (ndarray): Image frame.
- frame (ndarray): Image frame with shape (height, width, 3).
- bins (int): Number of bins for the histogram.
Returns:
- ndarray: Normalized histogram feature vector.
"""
histogram, _ = np.histogram(frame.flatten(), bins=bins, range=[0, 255])
return histogram.astype(np.float32) / frame.size
feature_vector = []
for channel in range(3):
histogram, _ = np.histogram(frame[:,:,channel].flatten(), bins=bins, range=[0, 255])
normalized_histogram = histogram.astype(np.float32) / frame[:,:,channel].size
feature_vector.extend(normalized_histogram)
return np.array(feature_vector)
def preprocess_frame(frame):
# Check frame dimensions and resize if necessary
@ -41,6 +47,7 @@ def preprocess_frame(frame):
# Extract features
edge_feature = extract_edge_features(frame)
histogram_feature = extract_histogram_features(frame)
histogram_feature_image = np.full((HEIGHT, WIDTH), histogram_feature.mean()) # Convert histogram feature to image-like shape
combined_feature = np.stack([edge_feature, histogram_feature_image], axis=-1)