The data set will now process frames from ALL videos
This commit is contained in:
Jordon Brooks 2023-08-17 23:42:06 +01:00
parent b95e3558ff
commit ba6c132c67

View file

@ -1,5 +1,6 @@
# video_compression_model.py
import gc
import os
import cv2
import numpy as np
@ -18,6 +19,7 @@ def combine_batch(frame, crf, speed, include_controls=True, resize=True):
height, width, _ = processed_frame.shape
combined = [processed_frame]
if include_controls:
crf_array = np.full((height, width, 1), crf)
speed_array = np.full((height, width, 1), speed)
@ -27,56 +29,52 @@ def combine_batch(frame, crf, speed, include_controls=True, resize=True):
def data_generator(videos, batch_size):
# Infinite loop to keep generating batches
base_dir = os.path.dirname("test_data/validation/validation.json")
while True:
# Iterate over each video
for video_details in videos:
# Get the paths for compressed and original (uncompressed) video files
base_dir = os.path.dirname("test_data/validation/validation.json")
video_path = os.path.join(base_dir, video_details["compressed_video_file"])
uncompressed_video_path = os.path.join(base_dir, video_details["original_video_file"])
# Lists to store the processed frames
compressed_frame_batch = [] # Input data (Target)
uncompressed_frame_batch = [] # Target data (Training)
CRF = scale_crf(video_details["crf"])
SPEED = scale_speed_preset(PRESET_SPEED_CATEGORIES.index(video_details["preset_speed"]))
# Get a list of video capture objects for all videos
caps_compressed = [cv2.VideoCapture(os.path.join(base_dir, video["compressed_video_file"])) for video in videos]
caps_uncompressed = [cv2.VideoCapture(os.path.join(base_dir, video["original_video_file"])) for video in videos]
# Open the video files
cap_compressed = cv2.VideoCapture(video_path)
cap_uncompressed = cv2.VideoCapture(uncompressed_video_path)
# As long as any video can provide frames, keep running
while any(cap.isOpened() for cap in caps_compressed):
for idx, (cap_compressed, cap_uncompressed) in enumerate(zip(caps_compressed, caps_uncompressed)):
#print(f"(Video Change) Processing video {idx}") # Print statement to indicate video change
# Lists to store the processed frames
compressed_frame_batch = [] # Input data (Target)
uncompressed_frame_batch = [] # Target data (Training)
# Read and process frames from both videos
while cap_compressed.isOpened() and cap_uncompressed.isOpened():
ret_compressed, compressed_frame = cap_compressed.read()
ret_uncompressed, uncompressed_frame = cap_uncompressed.read()
if not ret_compressed or not ret_uncompressed:
break
continue
CRF = scale_crf(videos[idx]["crf"])
SPEED = scale_speed_preset(PRESET_SPEED_CATEGORIES.index(videos[idx]["preset_speed"]))
# Target data
compressed_combined = combine_batch(compressed_frame, CRF, SPEED, include_controls=False)
# Input data
uncompressed_combined = combine_batch(uncompressed_frame, 0, scale_speed_preset(PRESET_SPEED_CATEGORIES.index("veryslow")))
# Append processed frames to batches
compressed_frame_batch.append(compressed_combined)
uncompressed_frame_batch.append(uncompressed_combined)
# If batch is complete, yield it
if len(compressed_frame_batch) == batch_size:
yield (np.array(uncompressed_frame_batch), np.array(compressed_frame_batch)) # Yielding Training and Target data
compressed_frame_batch = []
uncompressed_frame_batch = []
yield (np.array(uncompressed_frame_batch), np.array(compressed_frame_batch))
compressed_frame_batch.clear()
uncompressed_frame_batch.clear()
# Release video files
cap_compressed.release()
cap_uncompressed.release()
# Close all video captures at the end
for cap in caps_compressed + caps_uncompressed:
cap.release()
cv2.destroyAllWindows()
# If there are frames left that don't fill a whole batch, send them anyway
if len(compressed_frame_batch) > 0:
yield (np.array(uncompressed_frame_batch), np.array(compressed_frame_batch))
# If there are frames left that don't fill a whole batch, send them anyway
if len(compressed_frame_batch) > 0:
yield (np.array(uncompressed_frame_batch), np.array(compressed_frame_batch))
class VideoCompressionModel(tf.keras.Model):
def __init__(self):
@ -105,10 +103,5 @@ class VideoCompressionModel(tf.keras.Model):
])
def call(self, inputs):
#print("Input shape:", inputs.shape)
encoded = self.encoder(inputs)
#print("Encoded shape:", encoded.shape)
decoded = self.decoder(encoded)
#print("Decoded shape:", decoded.shape)
return decoded
return self.decoder(self.encoder(inputs))