update model
This commit is contained in:
parent
98df94b180
commit
9cecaeb9d6
1 changed files with 12 additions and 17 deletions
|
@ -89,31 +89,26 @@ class VideoCompressionModel(tf.keras.Model):
|
||||||
# Encoder part of the model
|
# Encoder part of the model
|
||||||
self.encoder = tf.keras.Sequential([
|
self.encoder = tf.keras.Sequential([
|
||||||
layers.InputLayer(input_shape=input_shape),
|
layers.InputLayer(input_shape=input_shape),
|
||||||
layers.Conv2D(64, (3, 3), padding='same'),
|
layers.Conv2D(32, (3, 3), padding='same'),
|
||||||
#layers.BatchNormalization(),
|
|
||||||
layers.LeakyReLU(),
|
layers.LeakyReLU(),
|
||||||
layers.MaxPooling2D((2, 2), padding='same'),
|
layers.MaxPooling2D((2, 2), padding='same'),
|
||||||
layers.SeparableConv2D(32, (3, 3), padding='same'), # Using Separable Convolution
|
layers.Dropout(0.4),
|
||||||
#layers.BatchNormalization(),
|
layers.SeparableConv2D(16, (3, 3), padding='same'),
|
||||||
layers.LeakyReLU(),
|
layers.LeakyReLU(),
|
||||||
layers.MaxPooling2D((2, 2), padding='same')
|
layers.MaxPooling2D((2, 2), padding='same'),
|
||||||
|
layers.Dropout(0.4),
|
||||||
])
|
])
|
||||||
|
|
||||||
# Decoder part of the model
|
# Decoder part of the model using Transposed Convolutions for upsampling
|
||||||
self.decoder = tf.keras.Sequential([
|
self.decoder = tf.keras.Sequential([
|
||||||
layers.Conv2DTranspose(32, (3, 3), padding='same'),
|
layers.Conv2DTranspose(16, (3, 3), padding='same'),
|
||||||
#layers.BatchNormalization(),
|
|
||||||
layers.LeakyReLU(),
|
layers.LeakyReLU(),
|
||||||
layers.Conv2DTranspose(64, (3, 3), dilation_rate=2, padding='same'), # Using Dilated Convolution
|
layers.Dropout(0.4),
|
||||||
#layers.BatchNormalization(),
|
layers.Conv2DTranspose(32, (3, 3), strides=(2, 2), padding='same'),
|
||||||
layers.LeakyReLU(),
|
layers.LeakyReLU(),
|
||||||
# First Sub-Pixel Convolutional Layer
|
layers.Dropout(0.4),
|
||||||
layers.Conv2DTranspose(NUM_COLOUR_CHANNELS * 4, (3, 3), padding='same'), # 4 times the number of color channels for first upscaling by 2
|
layers.UpSampling2D((2, 2)),
|
||||||
layers.Lambda(lambda x: tf.nn.depth_to_space(x, block_size=2)), # Sub-Pixel Convolutional Layer with block_size=2
|
layers.Conv2D(NUM_COLOUR_CHANNELS, (3, 3), padding='same', activation='sigmoid')
|
||||||
# Second Sub-Pixel Convolutional Layer
|
|
||||||
layers.Conv2DTranspose(NUM_COLOUR_CHANNELS * 4, (3, 3), padding='same'), # 4 times the number of color channels for second upscaling by 2
|
|
||||||
layers.Lambda(lambda x: tf.nn.depth_to_space(x, block_size=2)), # Sub-Pixel Convolutional Layer with block_size=2
|
|
||||||
layers.Activation('sigmoid')
|
|
||||||
])
|
])
|
||||||
|
|
||||||
|
|
||||||
|
|
Reference in a new issue